

Municipal Energy Services Agency (MESA)

Technical Report

Smethport Woody Biomass

Smethport Woody Biomass Demonstration Project

Bad Vilbel, 02.12.2009

© Lahmeyer International GmbH, 2009

The information contained in this document is solely for the use of the Client identified on the cover sheet for the purpose for which it has been prepared.

Lahmeyer International GmbH undertakes no duty to or accepts any responsibility to any third party who may rely upon this document.

All rights reserved. No section or element of this document may be removed from this document, reproduced, electronically stored or transmitted in any form without written permission of Lahmeyer International GmbH.

Smethport Woody Biomass

Smethport Woody Biomass Demonstration Project

Prepared for **Municipal Power Services Agency (MESA)** 2600 Airport Drive Columbus, OH 43219

Prepared by **Lahmeyer International GmbH**Friedberger Str. 173

D-61118 Bad Vilbel

Inspection status: DRAFT

Revision History

Rev.	Date	Author	Checked by	Approved by	Description
1.0	18.11.2009	Wulf Hohmann	Wulf Hohmann		
1.1	23.11.2009	GEF	Wulf Hohmann		
1.2	25.11.2009	Larry Martin	Darek Letkiewicz		
1.3	25.11.2009	Seeger	Wulf Hohmann		
1.4	30.11.2009		Wulf Hohmann		

Table of Contents

<u>I</u>	į	Executive Summary	1
II	F	Project Introduction	1
II.A	F	Project Background	1
II.B	F	Project Start	1
III	E	Borough Conditions	2
III.A	E	Borough Utility Conditions	2
III.A.1	Е	Electricity	2
III.A.2	١	Water	3
III.A.3	5	Sewer	3
III.A.4	1	Natural Gas	3
IV	F	Project Alternatives	4
IV.A	N	Modules Feasibility Study	4
IV.A.1	H	Heat Demand Evaluation	4
	IV.A. IV.A. IV.A.	.2.2 Hydraulic Flow Calculation1	6 1
	(V.A. IV.A. IV.A. IV.A. IV.A. IV.A. IV.A.	.3.2Conceptual Design2.3.3Technical Description3.3.4Feedwater Supply4.3.5Peak Load and Redundancy Boiler4.3.6Electrical Equipment of the Plant4.3.7Emergency Power System4.3.8Auxiliary Systems of the Plant4	1 5 2 2 3 3 4
	F IV.A. IV.A.	- · · · · · · · · · · · · · · · · · · ·	5
IV.A.5	9	Site Plan and Facility General Arrangement4	8
	IV.A. IV.A.	0 11	9

	IV.A.6.3	Regulatory Agency Consultation	52
	IV.A.6.4	Permitting Schedule	
	IV.A.6.5	Approvability	54
IV.A.7	Capital	Cost Estimate	56
IV.A.8	Financi	ial Analysis	57
	IV.A.8.1	Input Data	57
		Outcomes	
	IV.A.8.3	Conclusions and Recommendations	59
V	Recon	nmendations	60
V.A	Recom	manded Plan	60
V.B	Project	Implementation	60
V.C	Project	Schedule	60

List of Figures Figure IV.A.2-1: Heat density map......7 Figure IV.A.2-2: District heating distribution network9 Figure IV.A.2-3: Annual load duration curve (worst case)......10 Annual load duration curve (best case)......11 Figure IV.A.2-4: Figure IV.A.2-5: Supply temperature depending on the outdoor temperature.....12 Figure IV.A.2-6: Pipe diameters of the main distribution network15 Figure IV.A.3-1: Push floor unit before operation......32 Figure IV.A.3-2: Automatic fuel storage facility with two push floor units33 Figure IV.A.3-3: Push grate furnace before installation34 Figure IV.A.3-4: Push grate furnace in operation......35 Figure IV.A.3-5: Combustion chamber with push grate furnace......36 Sectional view of an electrostatic precipitator39 Figure IV.A.3-6: View of an ORC module41

Figure IV.A.3-7:

List of Tables

Table IV.A.1-1:	Characteristic values of usage groups	5
Table IV.A.1-2:	Major outcomes of heating demand evaluation	6
Table IV.A.2-1: D	imensioned pipe diameters in dependence to their length	14
Table IV.A.2-2:	Investment costs (worst case)	16
Table IV.A.2-3:	Investment costs (best case)	16
Table IV.A.2-4:	Summary of the first costs	19
Table IV.A.2-5:	Further investment costs	19
Table IV.A.2-6:	Results of the hydraulic calculations	20
Table IV.A.3-1:	Characteristics for best case heat load graph	21
Table IV.A.3-2:	Characteristics for worst case heat load graph	22
Table IV.A.3-3:	Supply and return temperatures	22
Table IV.A.3-4:	Typical elemental composition of natural wood	23
Table IV.A.3-5:	Particle size classification of wood chips	23
Table IV.A.3-6:	Fuel characteristics as basis for CHP-dimensioning	24
Table IV.A.3-7:	Basic values for cost-benefit analysis	24
Table IV.A.3-8:	Technical parameters for Alternative 1	26
Table IV.A.3-9:	Heat and power generation for Alternative 1 for best case	27
Table IV.A.3-10:	Heat and power generation for Alternative 1 (worst case)	27
Table IV.A.3-11:	Technical parameters for Alternative 2	28
Table IV.A.3-12:	Heat and power generation for Alternative 2 for best case	29
Table IV.A.3-13:	Heat and power generation for Alternative 2 for worst case	29
Table IV A 3-14	Technical parameters for Alternative 3	30

Table IV.A.3-15:	Heat and power generation for Alternative 3 for best case	31
Table IV.A.3-16:	Heat and power generation for Alternative 3 for worst case.	31
Table IV.A.3-17:	Specific heat generation costs for Alternatives 1- 3	44
Table IV.A.4-1:	ESTIMATED UTILITY PEAK DEMANDS	45
Table IV.A.4-2:	ESTIMATED ANNUAL UTILITY DEMANDS	46
Table IV.A.7-1:	Project Capital Cost	56
Table IV.A.8-1:	Major outcomes of Financial Analyses	59
Table IV.A.8-2:	Sensitivity Analyses Specific Heat Costs	59
Table IV.A.8-3:	Typical characteristics residential house in Smethport	60

List of Annexes

Annex IV.A.2-A

Annex IV.A.3-A: Basic Information

Annex IV.A.3-B: Technical Data

Annex IV.A.4

Annex IV.A.5

Annex IV.A.6-A Potential Right-to-Build Permits, Approvals and Reviews

Annex IV.A.6-B Natural Heritage Sites

Annex IV.A.6-C1. Site 1 Soil Map

Annex IV.A.6-C2. Site 1 Soil Data

Annex IV.A.6-C3. Site 2 Soil Map

Annex IV.A.6-C4. Site 2 Soil Data

Annex IV.A.6-C5. Site 2 Soil Data

Annex IV.A.6-C6. Site 3 Soil Map

Annex IV.A.6-C7. Site 3 Soil Data

Annex IV.A.6-C8. Site 3 Soil Data

Annex IV.A.6-C9. Site 3 Soil Data

Annex IV.A.6-E. PNDI – Project Environmental Review Receipt

Annex IV.A.6-F1. Species List

Annex IV.A.6-F2. Fresh Water Mussels (Elktoe)

Annex IV.A.6-F3. Fresh Water Mussels (Creek Heelsplitter)

Annex IV.A.6-G1. ER Submission

Annex IV.A.6-G2. Archaeological Record of Disturbance

Annex IV.A.6-G3. Archaeological Review Map

Annex IV.A.6-H. Permitting Schedule

Annex V.C Project Schedule

I Executive Summary

Will be implemented after discussions.

II Project Introduction

II.A Project Background

To establish Smethport as an energy independent borough with an affordable, locally controlled, and sustainable energy supply, the Municipal Energy Service Agency (MESA) on behalf of the Borough of Smethport (Borough) sought a Technical Consultant to provide a feasibility study on woody biomass utilization in Smethport.

The study includes an assessment of the opportunities, as well as recommendations to deploy a Combined Heat and Power (CHP) production facility fueled by woody biomass feedstock to supply a portion of the power and heating needs of the Borough. To take advantage of the upcoming reconstruction of the drinking water system, it is envisaged that the district heating network will be installed simultaneously.

The Smethport Woody Biomass Demonstration Project specifically called for European expertise in wood-fired CHP plants and district heating systems. To meet the requirements of the assignment and to form a team of specialized consulting and engineering companies, Lahmeyer International, as an independent engineering consultant, teamed up with GEF Ingenieur AG and Seeger Engineering AG, two other established companies from Germany. Knowing that a European technical approach cannot simply be transferred to Smethport, Pennsylvania, the Team was completed with O'Brien & Gere, a well-known consultant from the United States.

II.B Project Start

With the start of the project in August 2009 after commissioning, open points of the "project needs list" were clarified. The projects needs list was given to Smethport by the Team after the Interview in April 2009.

Additional and missing data for the Feasibility Study was gathered by the Team during three days on-site in Smethport in August 2009. In order to make these three days as effective as possible for the project, in advance of the trip the Borough – in consultation with the Team – organized many meetings and appointments.

Since the Borough would like to take advantage of the upcoming reconstruction of the fresh water system by installing the district heating network simultaneously with

the installation of the water pipes, the Team also secured a description of the project properties and streets affected, and a rough schedule for the whole activity.

At the end of the site visit, the Team and the Borough determined boundary conditions for the Base Case Scenario based on the findings during the site visit and the Borough's decision concerning the reconstruction of the fresh water system.

Ш **Borough Conditions**

The Borough is a municipality with a population of about 1,650 located in McKean County in northwest Pennsylvania. Smethport is located in the center of the Pennsylvania Wild's "wood basket" represented by 5.2 million acres of forest land which includes the Allegheny National Forest, DCNR State Forests, and considerable private forest ownership. In addition to its location in the midst of the great forest lands of northwestern Pennsylvania, Smethport is unique as the only municipality in the twelve-county area comprising the Pennsylvania Wilds Region to supply electricity to the residents of its Borough and surrounding areas through a Borough-owned electric utility company

III.A **Borough Utility Conditions**

III.A.1 **Electricity**

Since the 1920s, the Borough has owned and operated its own electric company. To this day, it remains unique in the twelve-county "Pennsylvania Wilds" region as the only municipality that runs its own power company - servicing its own transmission lines and purchasing electricity from outside generators.

The Borough is currently serviced by a 12.47kV loop service with the point of connection on the East side of the Borough in proximity to the intersection of RT 6 and Railroad Ave. (see Figure 2.1). The loop configuration connection of the First Energy 12.47kV lines provides a flexible utility source for the Borough.

The historical Borough electrical demand is 2.9MW peaking in the early summer period. The average Borough load is estimated to be 2.2MW

III.A.2 Water

The Borough's 100-year-old water system is in desperate need of replacement. Old iron pipes, and even some wood piping, run underground throughout the community. The Borough's ground water is supplied by three wells on Ralph Street.

The water system is owned by the Boroughand includes two (2) groundwater wells, mains ranging in size from 2-inches to 12-inches in diameter, the 500,000 gallon Fulton Street Storage Tank, and three (3) pressure reducing valves (PRV). The Borough and the Borough of Smethport Authority (Authority) are in the process of transferring the water system from the Borough to the Authority.

The main problems in the water distribution system include insufficient pressure at the School Complex and in the northwestern part of the system, deteriorating lines on Main Street, lack of fire service, high unaccounted for water, PRV operational problems, and lack of line valves. Additionally, the Borough has recently discussed possible upgrades to the water plant facilities. The price tag to rebuild the system is currently estimated at \$20 million.

III.A.3 Sewer

The Authority operates a Wastewater Treatment Plant located on the East side of Borough at E Water Street Ext. The WWTP has a treatment capacity of 0.75 million gallons per day (mgd). The sewer lines range from 18-inches to 4-inches. The location of the WWTP and the sewer system are depicted in Figure 2.1. The system is combined sewer overflow, which combines both stormwater and sanitary water though piping.

III.A.4 Natural Gas

The utility Natural Fuel Gas Company provides Smethport, PA with Natural Gas (NG). The National Fuel Gas Distribution Corporation sells or transports natural gas to nearly 731,000 customers in western New York and northwestern Pennsylvania. In Smethport, the NG service is located on the west side in proximity to the water wells.

IV Project Alternatives

IV.A Modules Feasibility Study

IV.A.1 Heat Demand Evaluation

IV.A.1.1.1 Existing Heat Demand

After the interview in Smethport in April 2009, the Team gave the Borough the advice to create a masterlist including the heat demand and additional important data of all properties of the Borough as the basis for the feasibility study, and made suggestions for the content of this masterlist.

The origin for this masterlist was an existing Excel spreadsheet containing the data from replies to a survey that was carried out in the Borough of Smethport some years/month before the project start. The response rate was high with around 435 replies. This origin masterlist is populated with a multitude of information including the property owner, living square footage, fuel type, furnace type and size, annual fuel consumption, and information related to a second furnace if applicable.

The Borough and the Team agreed that data related to the remaining properties that did not reply to the survey – and relevant information like heating capacity and fuel consumption for the single property – would not be obtained via a second survey, but by assembling different data and information sources with direct access by the Borough instead.

It was decided that the masterlist will be assembled by the Borough and that a minimum living square footage and utilization of the single property would be established by the Borough. It was also decided that integration between this masterlist and an already existing GIS-model of Smethport¹ will be completed by the Borough prior to the conceptual design of the district heating network, so that the data for each single property can be assigned to the properties position on the GIS-model by the team.

On the basis of the known course of the fresh water system, the Borough made the first selection of properties which are planned to be connected to the district heating network in the future.

The final version of the masterlist² contains information and data for 899 properties in Smethport with a single heating facility. The properties also had information related to their usage (Residential, Commercial, Office, Church, Nursing home, In-

¹ Different GIS-files from Gannet Fleming and Mc Kean County.

² File "SmethportBioMass_mdb_ver.4.3.mdb", containing table "Address_Pts" and table "Heat-Load_3_1". Table "HeatLoad_3_1" contained 1,052 lines, 1,043 AID numbers and for 899 lines with information for square footage.

dustrial). For 309 properties the masterlist contained more detailed information for the single property as a result of the survey.

This final masterlist was taken as basis for the heat demand evaluation.

As first step of the heat demand evaluation, for each of the 309 properties with detailed information, the annual heat demand was generated on the basis of the sum of the known fuel consumption (primary and secondary) and assumptions for the efficiency of the boiler (primary and secondary). As a function of the usage the 309 properties were pooled in usage groups.

As next step for each usage group mean specific values for the annual heat demand were generated. The specific values for all usage groups can be found in **Table IV.A.1-1**.

For all 899 properties as minimum information next to usage and AID code (necessary data for GIS model) the heated square footage was given. To calculate the annual heat demand of the remaining 590 properties (899 properties minus 309 properties with detailed information from survey) the heated square footage of the single property was multiplied with the mean specific value for the annual heat demand of the appropriate usage group.

The calculated annual heat demand of all 899 properties for heating and domestic hot water was 40,700 MWh per year.

The heating capacity for each of the 899 properties was investigated on basis of specific nominal heat load hours in accordance with the German VDI 2067 standard and the calculated values for the annual heat demand. The specific values for all usage groups can also be found in **Table IV.A.1-1**.

The calculated maximum heating capacity of all 899 properties for heating and domestic hot water was 22.2 MW.

Table IV.A.1-1: Characteristic values of usage groups

Usage Group	Number	Spec. annual heat demand	Nominal load hours
	[-]	[kWh/m²]	[h/a]
Residential	278	200	2,000
Commercial	8	120	2,000
Office	15	200	1,700
Church	5	140	500
Nursing home	1	330	2,500
Industrial	2	60	2,000

The calculations and outcomes of the heat demand evaluation could be found in file "HeatLoad_5_1 20090925a.xls" which afterwards was taken as the basis for the distribution system investigation.

Table IV.A.1-2: Major outcomes of heating demand evaluation

Number of Properties	899
Annual Heat Demand	40,700 MWh/a
Maximum Heating Capacity	22.2 MW

IV.A.1.1.1.1 Future Heat Demand

Since no indications of major changes for the heat demand were given (e.g. Borough forecast for the next 10-25 years) the calculated values for annual heat demand and heating capacity were assumed to be constant for the purpose of the feasibility study.

IV.A.2 Distribution System Investigation

IV.A.2.1 Generate Hydraulic Flow Model

One important component for a pipeline-bound heat supply system is the design of the distribution network. The dimensioning of the distribution network depends on the position and heat load of the consumers. Therefore, the first step is the analysis of the heat demand. Thus, a heat density map was developed.

As basis of the heat density map (cp. **Figure IV.A.2-1** and **Annex IV.A.2.1-1**) the heat demand evaluation from Lahmeyer International was used. In the heat density map the heat density [BTU/hour per foot²] is illustrated in graduated tones. The darker colors represent higher heat densities.

Because of the map size, the heat load of every single building is only presented in **Annex IV.A.2-1**. There, every building is illustrated as a small circle and located on the basis of its x- and y-coordinates. The different circle-sizes represent the dimension of the heat load.

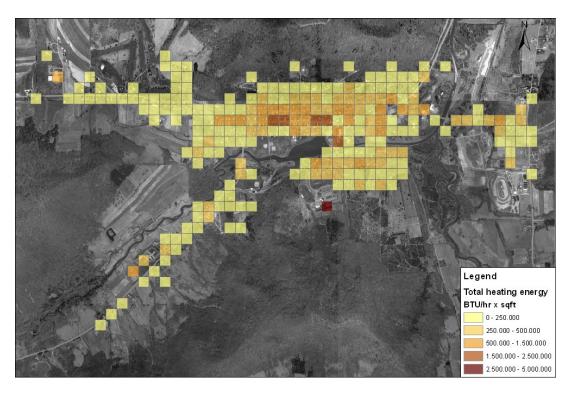


Figure IV.A.2-1: Heat density map

After establishing the location of the biomass-CHP-plant at the old industrial wasteland north-east of Smethport (SITE 3) as the only location for the heat generation, the pipeline route follows the highest heat density. Another input requirement in this case is the distribution of the planned new fresh water system. With the installation of a new fresh water system in the old distribution route, the road surface will already be scarified. That will decrease the first costs for the construction of a district heating system.

Before the analysis of the heat demand the examined area – illustrated in the heat density map (cp. Figure IV.A.2-1) as squares with colors from yellow to brown – was limited. The limitation factors for the predefined area under investigation were:

- Only areas near the given course for the regeneration of the fresh water system
- Only areas which include county buildings
- Only areas with a total heat energy density bigger than 250,000 BTU/hr x ft2

If the buildings were arranged close to the district heating pipeline route, they were also integrated in the following considerations even if they had a lower heat density than 250,000 BTU/hr x ft².

After the selection of the predefined area under investigation, the primary 899 buildings decreased to 709 buildings.

02.12.2009

For the generation of the hydraulic flow model two variants were examined, a worst case and a best case variant:

 Worst case: 100% of the heat load of the county buildings, school, and ten largest consumers, plus 25% of the heat load of all other buildings in the predefined area under investigation

• Best case: 100% of the heat load in the predefined area under investigation

The heat demand for consumers in the area around the district heating pipeline route was determined and as a worst case scenario, valuated with a connection probability factor of 25%. That means it was assumed that about 25% of the total heat demand of the surrounding consumers could be connected to the district heating system. This assumption excluded the public buildings which would definitely be connected to the district heating system (connection probability factor of 100%). Also the ten largest consumers were valuated with a connection probability of 100%, so that the district heating system will have a worst-case scenario basic load when it is put into operation.

Mostly the reality will be between the two variants, a 100%-connection-probability (best case) will be rarely be achieved. The construction of a district heating system normally starts with a similar state to the worst case and aspires towards the best case. That means the worst case scenario is the initial stage and the best case scenario is the final ambition stage. The dimensioning of the district heating pipes has to run at the best case scenario but must also satisfy the worst case scenario.

In addition to the above named terms (following the highest heat density and the distribution route of the fresh water system) an attempt was made to connect the public buildings and the ten largest consumers as corner pillars of the future district heating system. With the exception of Smethport Specialty, all major consumers are arranged close to the designated district heating pipeline route.

In the above-described modality a district heating distribution network was generated and is presented in Figure IV.A.2-1. The next step was the determination of the pipe sizes and operation parameters.

Figure IV.A.2-2: District heating distribution network

Other important results of the heat density analysis, required for the design of the heat generation plant, were the total heat demand and the load duration curves (worst case and best case).

The heat demand for the worst case is composed of:

•	County buildings and school	max. load energy	9,088,000 BTU/hr x 100% 15,820 x 10 ⁶ BTU x 100%
•	Ten largest customers	max. load energy	8,886,000 BTU/hr x 100% 11,102 x 10 ⁶ BTU x 100%
•	Rest of the predefined area	max. load energy	44,763,000 BTU/hr x 25% 87,301 x 10 ⁶ BTU x 25 %

These values were multiplied with a simultaneous building demand factor of 0.8 and including 2% heat loss the maximum load amounts about 23,795,000 BTU/hr and the energy $56,058 \times 10^6$ BTU (incl. 15% heat loss).

The heat demand for the best case is composed of:

•	County buildings and school	max. load	9,088,000 BTU/hr x 100%
		energy	15,820 x 10 ⁶ BTU x 100%

 Ten largest customers 	max. load	8,886,000 BTU/hr x 100%
	energy	11,102 x 10 ⁶ BTU x 100%

 Rest of the predefined area 	max. load	44,763,000 BTU/hr x 100%
	energy	87,301 x 10 ⁶ BTU x 100%

The values for the best case were also multiplied with a simultaneous building demand factor of 0.8 and including 2% heat loss the maximum load amounts about 51,200,000 BTU/hr and the energy $131,355 \times 10^6$ BTU (incl. 15% heat loss).

In fig. 3.3-3a and 3.3-3b the annual load duration curve for the worst and best case scenarios are shown.

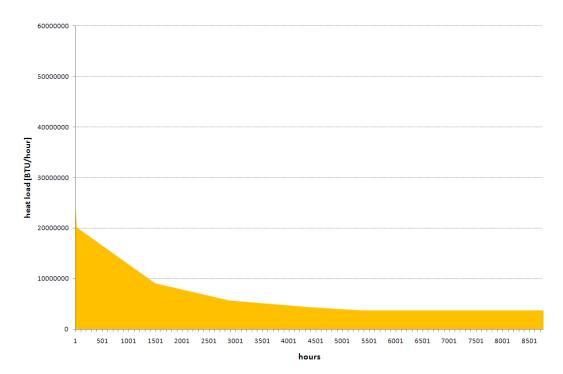


Figure IV.A.2-3: Annual load duration curve (worst case)

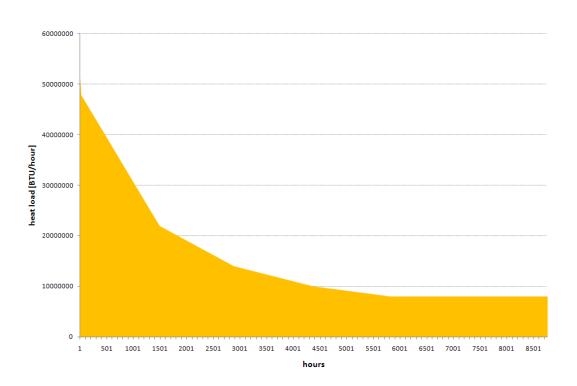


Figure IV.A.2-4: Annual load duration curve (best case)

IV.A.2.2 Hydraulic Flow Calculation

After the heat demand analysis and the design of the heat generation plant, the parameter for the dimensioning had to be defined.

The pipe sizes are determined from the maximum mass flow, which in turn depends on the temperature difference. By dimensioning the pipe diameters it was assumed that the maximum mass flow occurs at the maximum heat load.

The maximum heat load of the district heating system is from the sum of the heat loads of every single consumer multiplied with a simultaneous building demand factor. The simultaneous building demand factor depends on the number of connected buildings in the district heating system. Assuming a simultaneous building demand factor of 0.8 there is sufficient safety included.

To simulate the load distribution as accurately as possible, in addition to the public buildings, the ten largest consumers were integrated in correct position into the district heating distribution network model. The rest of the consumers were summarized in sections and integrated as one consumer for every section (total heat demand of two to six squares was summarized and attached into the network model after the summarized squares in flow direction). A more detailed assimila-

tion doesn't make sense since there is no information on which buildings will be connected to the future district heating system.

A detailed breakdown of all consumers (corresponding to the best case scenario) is presented in **Annex IV.A.2-2**. The total connected load of 62,747,084 BTU/hr, multiplied with a simultaneous building demand factor of 0.8 (including 2% heat loss) represents the best case scenario.

With the allocation of the consumers and the multiplication with the simultaneous building demand factor of 0.8, a load distribution (incl. heat losses of about 2% of the maximum heat load) for the district heating system has arisen:

Worst case: maximum load approx. 23,795,000 BTU/hour
 Best case: maximum load approx. 51,200,000 BTU/hour

Besides the load distribution of the district heating system some other parameters determine the dimensioning of the pipe diameters. Fundamental for the dimensioning of the pipe sizes is the temperature difference between supply and return temperature. The return temperature for the worst and best case scenarios is 140°F (existing heating systems are often not state-of-the-art, preferably the return temperature should be kept as low as possible). The supply temperature is dependent on the outdoor temperature and, thus, on the load situation. In **Fig. 3.3-4** an example of such an operation temperature curve is shown. At an outdoor temperature of about 60°F only the heat demand for the domestic hot water preparation must be provided.

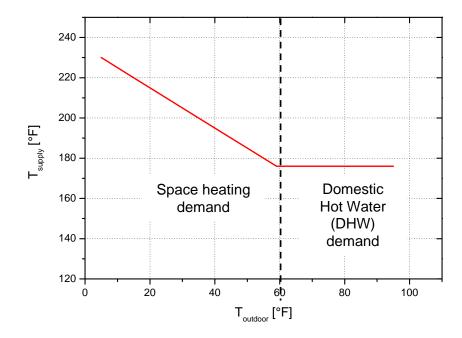


Figure IV.A.2-5: Supply temperature depending on the outdoor temperature

At the start of the operation the district heating system equates to the worst case. Experience has shown that the best case cannot be achieved right from the start, since the heat users mostly will – due to economical reasons – be connected to the system when need to replace their heating equipment. Nevertheless the pipe diameters will be sufficient to accommodate the final state of the district heating system. The goal was to provide the worst case situation with a lower supply temperature of about 194°F and raise the supply temperature with an increasing number of consumers to a maximum of 230°F.

The maximum supply temperature should be utilized only a few hours per year because of a more efficient energy supply with reduced heat losses.

The dimensioning of the pipe diameters were run at a maximum heat load (best case) and a maximum supply temperature. The operation temperature will be adapted in this way so that the maximum mass flow occurs at the maximum heat load.

It should be noted that SITE 3 is the only location for the heat generation – containing the plants for base load and peak load at one location.

Another requirement to the pipes was that the maximum specific pressure loss does not exceed 0.685 PSI/in (critical value for an efficient district heating development).

Overview of the dimensioning parameters:

Simultaneous building demand factor	0.8
Supply temperature	230°F
Return temperature	140°F
Maximum specific pressure loss	0.685 PSI/in
Wall roughness correction factor	0.004 in
Length correction factor	1.10

The wall roughness correction factor describes the pressure loss due to the friction force of the pipe wall. The length correction factor considers the additional pressure loss which is caused by branches, fittings, curved parts, and so on. It is an empirical value.

The results of the dimensioning are summarized in Section 'IV.A.2.3 Recommendation and Outcomes'.

IV.A.2.3 Recommendation and Outcomes

District heating distribution system:

The dimensioning was made for the best case scenario at the maximum heat load. That sets the possibility of a district heating supply for all other heat load scenarios, including worst case, since this load situation will cause the highest mass flow of supply water. The supply temperature can be adapted and optimized according to every single heat load scenario.

In Table IV.A.2-1 the required pipe diameters are presented in dependence to their length.

Table IV.A.2-1: Dimensioned pipe diameters in dependence to their length

Pipe diameter	Length of pipeline [ft]
1"	1,024
1.25"	340
1.5"	3,385
2"	6,181
2.5"	4,275
3"	4,830
4"	7,911
5"	2,731
6"	1,065
8"	2,711
10"	5,021
Total	39,472

The total pipeline length of about 39,500 ft contains the length of the main transmission pipeline and the length of the distribution pipelines. It does not contain the length of the sub-distribution pipelines and the house service connections. Since most of the consumers were assimilated as summarized consumers in the network model, the sub-distribution pipes as well as the house service connections are not included in the network model and therefore they could not be dimensioned. For the allocation of the sub-distribution diameters and the house service connections an assumption was required.

The main distribution network is shown in Figure IV.A.2-1. The pipe diameters are illustrated in graduated tones.

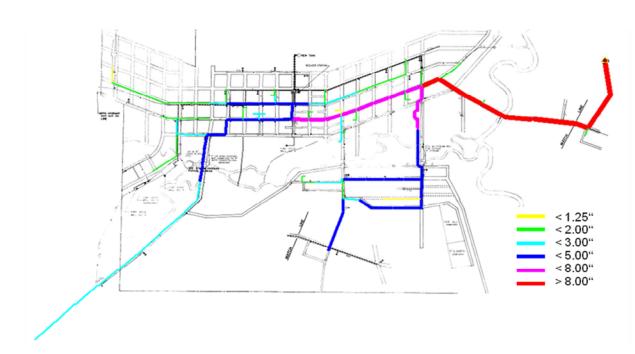


Figure IV.A.2-6: Pipe diameters of the main distribution network

The length of a house service connection averages 50 ft. In the predefined investigation area there is a total of 709 buildings, including ten county buildings and the ten largest customers. The county buildings and the major customers each have a house service connection provided in the network model, so 689 buildings remain.

$$689 \times 50 \text{ ft} = 34,450 \text{ ft}$$
 1" house service connections

Additionally it was assumed that besides the house service connections, one-third of the 689 buildings need sub-distribution pipelines. Since it concerns mainly single-family houses the average diameter of a sub-distribution pipeline is 1.25" with an average length of about 200 ft.

$$1/3 \times 689 \times 200 \text{ ft} = 45,900 \text{ ft}$$
 1.25" sub-distribution pipelines³

The estimated length of the house service connections and the sub-distribution pipelines are related to the best case. At the worst case scenario only 25% of the heat load of the remaining 689 buildings (excluding the ten county buildings and the ten largest customers) in the predefined area will be connected to the district heating system. So the length of the house service connections was reduced to a total of 8,610 ft (25% of the best case scenario). The length of the sub-distribution pipelines was not reduced at the worst case scenario because they will be built in the course of the replacement of the fresh water system.

Table 3.3-3 gives an overview of the pipe sizes and length for the district heating distribution network for the worst and best case scenarios. The investment costs for the distribution network were calculated with the specific costs in dollars per foot. In contrast to normal pipe construction costs, a part of the excavation costs

-

³ Hint: The transport capacity is proportional to the square of the diameter!

can be deducted because of the combined hauling of the district heating pipes and the pipelines for the fresh water system. In the table below (cp. **Table 3.3-2**) of pipe construction costs, it was assumed that the excavation costs decrease about 30-40%. The excavation costs comprise approximately 50% of the total pipe construction costs, so the normal pipe construction costs decrease about 15-20%.

Table IV.A.2-2: Investment costs (worst case)

Pipe diameter	Length [ft]	Specific costs [\$/ft]	Costs for pipe work [\$]	Excavation Costs [\$]	Investment Costs [\$]
1"	9,634	125	722,550	481,700	1,204,250
1.25"	46,240	125	3,468,000	2,312,000	5,780,000
1.5"	3,385	130	270,800	169,250	440,050
2"	6,181	140	525,385	339,955	865,340
2.5"	4,275	165	427,500	277,875	705,375
3"	4,830	200	579,600	386,400	966,000
4"	7,911	265	1,265,760	830,655	2,096,415
5"	2,731	290	477,925	314,065	791,990
6"	1,065	305	197,025	127,800	324,825
8"	2,711	360	590,998	384,962	975,960
10"	5,021	475	1,446,048	938,927	2,384,975
Total	93,984		9,971,591	6,563,589	16,535,180

Table IV.A.2-3: Investment costs (best case)

Pipe diameter	Length [ft]	Specific costs [\$/ft]	Costs for pipe work [\$]	Excavation costs [\$]	Investment costs [\$]
1"	35,474	125	2,660,550	1,773,700	4,434,250
1.25"	46,240	125	3,468,000	2,312,000	5,780,000
1.5"	3,385	130	270,800	169,250	440,050
2"	6,181	140	525,385	339,955	865,340
2.5"	4,275	165	427,500	277,875	705,375
3"	4,830	200	579,600	386,400	966,000
4"	7,911	265	1,265,760	830,655	2,096,415
5"	2,731	290	477,925	314,065	791,990
6"	1,065	305	197,025	127,800	324,825
8"	2,711	360	590,998	384,962	975,960
10"	5,021	475	1,446,048	938,927	2,384,975
Total	119,824		11,909,591	7,855,589	19,765,180

This cost estimate assumes that pre-insulated bonded pipes will be installed as the district heating distribution system. Pre-insulated bonded pipes are one of the most flexible, cost effective, and common types of piping systems. The pipes are pre-insulated in the factory and consist of a steel medium pipe and a plastic jacket pipe. The insulation between the two pipes is made from polyurethane (PUR) heat insulation foam, a rigid material that bounds the outer jacket with the inner medium pipe. The bonding PUR insulation also includes a leak detection system.

The most important limitation of the pipe is its maximum temperature restriction of 285°F, which minimizes the aging of the PUR foam caused by exposure to the high temperatures. The pipes are buried at frost-free depth in an open trench. After the laying of the pipe with a length of 15-30 ft, the single pipes are connected through welding. Afterwards the polyethylene (PE) jacket pipes are connected with shrinking bushings. Finally, the space between the medium pipe and the bushings is foamed in place. After all of the steps are complete, the trench is filled with sand and compressed to bury the pipes. When the pipes are completely buried, the trench is further filled and prepared for the desired surface. (See: A. Zhivov; J. Vavrin; A. Woody; D. Fournier; S. Richter; D. Droste; S. Paiho; J. Jahn; R. Kohonen: Evaluation of European District Heating Systems for Application to Army Installations in the United States, Chapter 3.1.2 Paragraph 7. ERCD/CERL TR-06-20; US Army Corps of Engineers, Engineer Research and Development Center, Champaign (IL) and Washington (D.C.), July 2006)

In contrast to a steel jacket pipe or other systems, pre-insulated bounded pipes need no axial-compensation and no u-bends. The quality supervision during the construction phase is very important.

In addition to the investment costs of the pipes at the beginning of the project, there are annual costs for operation and maintenance (O&M). O&M costs are estimated to be 1.5% of the investment costs in accordance with the German VDI 2067 standard. As a result annual O&M costs are about \$248,000 for the worst case and \$296,500 for the best case.

Customer Interface:

The customer interface connects the district heating network with the heating system of the customer. It is the connecter between the house service connection and the consumer's installation and provides the heat contractually regarding pressure, temperature, and volume flow to the consumer's installation.

The main parts of the customer interface are:

- 1. District heating control for the secondary side
- 2. Control valve
- 3. Differential pressure control, flow rate control
- 4. Heat meter
- 5. Plate heat exchanger

In state-of-the-art district heating systems all these components of the customer interface installation are packaged into an assembled unit called "compact station" as the interface between the district heating system and the single house or property.

Both the district heating control for the secondary side and the control valve regulate the secondary system flow according to the ambient temperature. The differential pressure control and flow rate control are used to control the flow rate. Therefore, a certain flow rate limitation is fixed while differential pressure is variable. When differential pressure increases, the controller shuts according to its setpoint; similarly when differential pressure decreases, the controller opens. The heat meter is used both for billing and to control the flow rate. In most cases, the utility owns the heat meter while the customer owns the compact station. The plate heat exchanger is used to decouple the primary district heating distribution system from the secondary building side. This is important if the secondary building piping cannot bear up the relative high temperatures and pressures of the primary district heating side. (See: A. Zhivov; J. Vavrin; A. Woody; D. Fournier; S. Richter; D. Droste; S. Paiho; J. Jahn; R. Kohonen: Evaluation of European District Heating Systems for Application to Army Installations in the United States, Chapter 3.1.3 and the following. ERCD/CERL TR-06-20; US Army Corps of Engineers, Engineer Research and Development Center, Champaign (IL) and Washington (D.C.), July 2006)

The existing direct lighted or electrical domestic hot water preparation in the single houses will be replaced by a storage charging system. The storage charging system is a combination of a circulatory system and storage. While the circulatory water heater provides the basic load, the storage secures the hot water for use in peak-periods.

The costs for a storage charging system are comprised of installation, storage and the storage charge pump, connection to the distribution station, and regulation. A single-family house needs maximum storage of approximately 50 gallons, and a storage charging system for a single-family house costs approximately \$3,500. That results in total costs of about \$2,370,160 for 689 single-family houses (best case scenario). In the worst case scenario only a quarter of the 689 houses will be equipped with a storage charging system. That results in costs of \$592,540.

The storage charging system costs for the county buildings as well as for the major customers are as yet undetermined. The utilization of these buildings cannot be concretely identified, though it is assumed that the jail, the school, and the Bowman Health Center (county buildings) as well as Old Sena-Kean Manor and Lakeview Care Center are in definite need of domestic hot water preparation. The rest of the buildings need just partial a domestic hot water preparation (e.g. churches need no domestic hot water preparation). The hot water storage needs for county buildings and major customers are much larger than storage for a standard single-family house. The costs for the storage charging systems for the county buildings are estimated to be \$36,800 and for the major customers \$53,400.

The investment costs for the compact stations (cp. **Annex 3.3-3**) are estimated on the basis of a cost function which defines that compact-stations smaller than 68,300 BTU/hr costs \$4,490. The costs for the bigger compact-stations rise in dependency to the connection load.

The investment costs for all compact-stations (best case) is \$3,394,180. The investment costs for the compact-stations in the worst case scenario decrease to 25% of the miscellaneous customers and amount to \$1,094,520, but also contain the complete costs for the county buildings and major customers.

Summary:

A summary of the first costs for the district heating distribution system, the domestic hot water preparation and the building substation is given in **Table IV.A.2-4**:

Table IV.A.2-4: Summary of the first costs

Investment costs	Best case [\$]	Worst case [\$]
DH distribution system pipe construction	19,765,180	16,535,180
DHW preparation storage charging system	2,370,160	592,540
Customer interface compact-station	3,394,180	1,094,520
Total	25,529,520	18,222,240

Further investment costs – as part of the distribution system – must be considered for the pressure maintenance and for the installation of the mains-operated circulating pump (cp. **Table IV.A.2-5**). The investment costs for safety equipment like main isolation valves are included in the specific costs for pipe construction. The costs for a monitoring system were considered together with the cost estimate for the mains-operated circulation pumps.

Table IV.A.2-5: Further investment costs

Investment costs	Best case [\$]	Worst case [\$]
Pressure maintenance (pm): - pm for 14 x 10 ⁶ gal - pipes, pumps, overflow valve,	59,800	59,800
regulation etc.	52,400	52,400
Mains-operated circulating pumps:		
- general costs	59,800	59,800
- pumps	112,200	89,700
 misc. machine technology 	149,600	149,600
 process measuring and con- trol technology 	216,900	209,400
Total	650,700	620,700

02.12.2009

Results of the hydraulic calculations:

After the dimensioning of the district heating distribution pipes, two hydraulic calculations at maximum heat load were run – one each for the worst and best case scenarios. The results are shown in **Table 3.3-5** and also in **Annex 3.3-4**.

Table IV.A.2-6: Results of the hydraulic calculations

	Worst case	Best case
Power entry [BTU/hr]	23,796,970	51,193,530
Peak power consumption [BTU/hr]	22,868,041	50,138,240
Heat losses [BTU/hr]	928,929	1,055,290
Peak mass flow [gal/hr]	53,164	68,503
Supply temperature [°F]	194	230
Return temperature [°F]	140	140
Outgoing pressure [PSI]	150	155
Return pressure [PSI]	43.5	43.5
Minimum differential pressure [PSI]	14.5	14.5

The heat losses for the peak load in the worst case scenario differ from the assumption made in section '3.3.1 Generate Hydraulic Flow Model'. There were assumed heat losses of 2%, but the calculation detected heat losses of about 4%. The best case scenario was in agreement. Because of the very low heat density in a widespread piping network with pipe sizes adapted to the best case scenario (causes small flow velocities) the heat losses in the worst case scenario exceeded the assumption of 2% (typical value).

As it is shown in **Table IV.A.2-6** the required nominal pressure level is PN16 (is consistent with 232 PSI).

Recommendation and Outcomes:

- The operation temperature should be kept at a low level to ensure a long lifetime of the piping system.
- The results of the dimensioning are only guide values. For concrete planning of the district heating distribution network, the dimensioning should be repeated with more detailed pre-settings.
- The specific pipe costs are average costs. The real costs can differ because of unforeseen difficulties in the streets.
- The cost estimate for the domestic hot water preparation particularly for the major customers – is very vague. The demands of these buildings should be investigated more precisely in the next phases of the project.

IV.A.3 Conceptual Design of Biomass-CHP-Plant

The Borough intends to erect and operate a biomass combined heat and power (CHP) plant for the provision of a new district heating network. The optimum system configuration shall be proposed for the biomass CHP plant. The system dimensioning is includes providing the heat supply of the district heating network, as well as efficient operation of the biomass CHP plant.

IV.A.3.1 Basic Information

The dimensioning and the cost-benefit analysis of the different concepts for the biomass CHP plant are based on the following information:

Heat demand

The dimensioning of the biomass CHP plant is based on the outcomes of the Heat Demand Evaluation and of the Distribution System Investigation of the district heating network.

As a result two sorted heat load graphs were provided for the heat supply of the district heating network. The first heat load graph, representing the expected final stage (best case) of the district heating network, is applied for the dimensioning of the biomass CHP plant. The second one represents the minimum heat supply in the initial stage (worst case) of the operation of the district heating network. The latter is not relevant for the dimensioning of the biomass CHP plant, but for the suitability of the concept.

The annual mean value of the thermal losses of the district heating network was estimated as 15%.

The conversion factor for SI energy and power units to BTU equals 3,412,141 BTU/MWh respectively 3,412 BTU/kWh.

The characteristics of the two heat load graphs are as follows.

Table IV.A.3-1: Characteristics for best case heat load graph

Heat demand in final stage			
Maximum thermal output	14.99	MW	
	51.19	Million BTU/h	
Annual heat quantity of produced heat	38,510	MWh/a	
	131.40	Billion BTU/a	
Annual heat quantity of sold heat	32,725	MWh/a	
	111.66	Billion BTU/a	

02.12.2009

Table IV.A.3-2: Characteristics for worst case heat load graph

Heat demand in initial stage				
Maximum thermal output	6.97	MW		
	23.80	Million BTU/h		
Annual heat quantity of produced heat	16,448	MWh/a		
	56.12	Billion BTU/a		
Annual heat quantity of sold heat	13,981	MWh/a		
	47.71	Billion BTU/a		

The sorted heat load graphs are attached in **Annex IV.A.3-A: Basic Information**.

Supply and return temperatures

As a result of the design of the district heating network, the following supply and return temperatures were provided. The value of the supply temperature varies depending on the thermal demand.

Table IV.A.3-3: Supply and return temperatures

Supply temperature				
12.83 14,99 MW	110	°C		
43.82 51.19 Million BTU/h	230	°F		
11.54 12.82 MW	105	°C		
39.41 43.81 Million BTU/h	221	°F		
8.96 11.53 MW	100	°C		
30.60 39.40 Million BTU/h	212	°F		
6.41 8.95 MW	95	°C		
21.89 30.59 Million BTU/h	203	°F		
5.57 6.40 MW	90	°C		
19.02 21.88 Million BTU/h	194	°F		
4.73 5.56 MW	85	°C		
16.15 19.01 Million BTU/h	185	°F		
0 4.72 MW	80	°C		
0 16.14 Million BTU/h	176	°F		

Return temperature			
0 14.99 MW	60	°C	
0 51.19 Million BTU/h	140	°F	

Fuel data

In the design of the biomass CHP plant, a provision is made for the combustion of natural wood chips in the wood furnace.

The quality of natural wood chips fluctuates depending on several factors including the type of wood, region of origin, season, and chipped parts of the tree. These result in strong variations of the water content, the ash content, the nitrogen content, the lower heating value (LHV), and the bulk weight of natural wood chips.

In the following the characteristics of the wood chips used as the basis of the design and dimensioning of the biomass CHP plant are defined.

The following table displays an exemplary elemental composition of natural wood chips according to our experiences.

Table IV.A.3-4: Typical elemental composition of natural wood

Element	Mass content
Carbon (C)	50,0 %
Oxygen (O)	44,0 %
Hydrogen (H)	6,0 %
Nitrogen (N)	0,5 %
Sulphur (S)	0,07 %
Chlorine (CI)	0,02 %
Ash content (dry matter)	3,0 %

The particle size of the wood chips needs to be defined in order to determine the design of the type of storage, transport, and furnace for the wood chips. The classification of wood chips according the European pre-norm CEN/TS 14961:2005 is given below.

Table IV.A.3-5: Particle size classification of wood chips according the European pre-norm CEN/TS 14961:2005

Class	Main fraction > 80% of weight	Fines < 5 %	Coarse material maximum particle length
<i>P</i> 16	3,15 mm ≤ P ≤ 16 mm	< 1 mm	max. 1 % > 45 mm, all < 85 mm
P45	3,15 mm ≤ P ≤ 45 mm	< 1 mm	max. 1 % > 63 mm
<i>P</i> 63	3,15 mm ≤ P ≤ 63 mm	< 1 mm	max. 1 % > 100 mm
<i>P</i> 100	3,15 mm ≤ P ≤ 100 mm	< 1 mm	max. 1 % > 200 mm

The recommended particle size of the wood chips is the class P63 acc. to CEN/TS 14961:2005 with the following additions:

Parameter	Value	
Extreme values	cross section 10 cm ² ; length 25 cm	
Outlier	< 300 mm acceptable	

The dimensioning of the biomass CHP plant is based upon the following fuel characteristics.

Table IV.A.3-6: Fuel characteristics as basis for CHP-dimensioning

Characteristic		Minimum	Dimensioning	Maximum
Water content	[%]	30	45	55
Ash content	[% of dry matter]	0.5	3.0	3.0
Nitrogen	[% of dry matter]	0,2	0,5	0,5
LHV	[kWh/kg]	1.8	2.3	3.5
Bulk weight	[kg/m³]	170	270	390

Financial data

The cost-benefit analysis for the comparison of the 3 CHP-Alternatives was mainly based upon the following prices and returns respectively:

Table IV.A.3-7: Basic values for cost-benefit analysis

Prices			
Fuel price for wood chips	35.00	USD/t (45% water content)	
	23.33	EUR/t (45% water content)	
	ca. 10.00	EUR/MWh	
Fuel price for natural gas	12.00	USD/1 million BTU	
	3.41	Million BTU/MWh	
	40.01	USD/MWh	
	26.67	EUR/MWh	
Electricity price	0.08	USD/kWh	
	80.00	USD/MWh	
	53.33	EUR/MWh	
Ash disposal price	20.00	USD/t	
	13.33	EUR/t	

Returns			
Power feed-in tariff (biomass CHP plants)	0.13	USD/kWh	
	130.00	USD/MWh	
	86.67	EUR/MWh	

- The exchange rate was set at 1.5 USD/EUR.
- The annuity was set at 10.3 %, which amounts to an interest rate of 6.0 % over a period of 15 years.
- The internal rate of return shall yield 10 %.

IV.A.3.2 Conceptual Design

In order to provide heat for the district heating network with the aforementioned quantities and temperature range from wood, there are several different concept alternatives possible.

The heat generation in a heating station is technically the most simple and least expensive solution in terms of investment costs, but less economical than the operation of a combined heat and power (CHP) generation process. The maximum supply temperature of a low pressure hot water boiler is 105°C/221°F. And, high pressure hot water boilers are needed for higher supply temperatures.

The first alternative is a biomass CHP plant with a thermal oil boiler in combination with an ORC module. For economical reasons the supply temperature derived from the ORC facility is set to 80°C/176°F.

The second alternative is a biomass CHP plant with steam boiler system and a heating type steam turbine. The supply temperature derived from the heating turbine is set to 90°C/194°F.

The third alternative is a biomass CHP plant with steam boiler system and an extraction condensing type steam turbine. The maximum supply temperature provided by this plant is defined by the pressure level of the steam extraction. In the present case, the maximum supply temperature is set to 110°C/230°F.

In any case, hot water boilers fired with fossil fuels such as light fuel oil or natural gas are designed to provide for peak load and redundancy, while the biomass fueled boiler is mainly supplying the basic load.

IV.A.3.2.1 Alternative 1

Alternative 1 is a biomass CHP plant with the combination of a thermal oil boiler with ORC module and a low pressure hot water boiler.

The technical parameters for the alternative 1 are as follows:

Table IV.A.3-8: Technical parameters for Alternative 1

Biomass furnace and thermal oil boiler	Value	Unit
Combustion heat performance	4,815	kW
Fuel demand at LHP 2.3 kWh/kg	15,492	t/a
Thermal oil rated load	3,815	kW
Thermal oil supply temperature at rated load	310	°C
Thermal oil return temperature at rated load	250	°C
Max acceptable operation pressure, thermal oil facility	13	bar
Flue gas temperature at chimney	170	°C

ORC module	Value	Unit
Thermal oil supply temperature to ORC evaporator	310	°C
Thermal oil return temperature from ORC evaporator	250	°C
Capacity of ORC evaporator	3,485	kW
Thermal oil supply temperature to ORC preheater	250	°C
Thermal oil return temperature from ORC preheater	130	°C
Capacity of ORC preheater	330	kW
Total heat input of ORC	3,815	kW
Hot water supply/return temperature	80/60	°C
Hot water capacity	3,060	kW
Electrical output	727	kW

Biomass furnace and low pressure hot water boiler	Value	Unit
Combustion heat performance	3,786	kW
Fuel demand at 45% water content	5,398	t/a
Hot water rated load	3,000	kW
Hot water supply temperature at rated load	105	°C
Hot water return temperature at rated load	75	°C
Max acceptable operation pressure, hot water facility	16	bar
Flue gas temperature at chimney	170	°C

The flow sheet displaying the thermal oil process with ORC module (alternative 1, load point 1: dimensioning) appears in **Annex IV.A.3-B: Technical Data**.

Table IV.A.3-9: Heat and power generation for Alternative 1 for best case

Heat and power generation in final stage (best case)			
Maximum thermal output	6,060	kW	
	20,70	Million BTU/h	
Annual heat generation	32,191	MWh/a	
	109.84	Billion BTU/a	
Maximum electrical output	727	kW	
	2.48	Million BTU/h	
Annual power generation	5,816	MWh/a	
	19.85	Billion BTU/a	

Alternative 1 allows postponing the installation of the low pressure hot water boiler to a later date when the additional heat supply is needed and the operation of the wood fueled boiler is economical.

Table IV.A.3-10: Heat and power generation for Alternative 1 (worst case)

Heat and power generation in initial stage (worst case)			
Maximum thermal output	3,060	kW	
	20.70	Million BTU/h	
Annual heat generation	13,733	MWh/a	
	46,86	Billion BTU/a	
Maximum electrical output	727	kW	
	2.48	Million BTU/h	
Annual power generation	5,816	MWh/a	
	19.85	Billion BTU/a	

The sorted heat load graphs showing the heat generation and the power generation of the planned of the biomass CHP plant to the heat supply for Alternative 1 appear in **Annex IV.A.3-B: Technical Data**.

The layout drawing of the biomass CHP plant for Alternative 1 also appears in **Annex IV.A.3-B: Technical Data**.

IV.A.3.2.2 Alternative 2

Alternative 2 is a biomass CHP plant with a steam boiler and a heating turbine. The technical parameters for Alternative 2 are as follows:

Table IV.A.3-11: Technical parameters for Alternative 2

Biomass furnace and steam boiler	Value	Unit
Combustion heat performance	14,146	kW
Fuel demand at LHP 2.3 kWh/kg	45,517	t/a
Live steam rated load	13.99	t/h
Live steam temperature at rated load	465	°C
Live steam pressure at rated load	51	bar _{abs}
Max acceptable operation pressure, steam facility	60	bar
Flue gas temperature at chimney	170	°C

Heating turbine	Value	Unit
Live steam mass flow	13.59	t/h
Extraction steam mass flow	0.50	t/h
Exhaust steam mass flow	13.09	t/h
Electrical output	2,600	kW

Exhaust steam / hot water heat exchanger	Value	Unit
Exhaust steam temperature	93.5	°C
Exhaust steam pressure	0.8	bar _{abs}
Hot water rated load	8,000	kW
Hot water supply temperature at rated load	90	°C
Hot water return temperature at rated load	60	°C
Max acceptable operation pressure, hot water facility	16	bar

The flow sheet displaying the water steam process with heating turbine (Alternative 2, load point 1: dimensioning) appears in **Annex IV.A.3-B: Technical Data**.

Table IV.A.3-12: Heat and power generation for Alternative 2 for best case

Heat and power generation in final stage (best case)			
Maximum thermal output	8,000	kW	
	27.32	Million BTU/h	
Annual heat generation	33,103	MWh/a	
	112.95	Billion BTU/a	
Maximum electrical output	2,600	kW	
	8.88	Million BTU/h	
Annual power generation	20,800	MWh/a	
	70.97	Billion BTU/a	

Table IV.A.3-13: Heat and power generation for Alternative 2 for worst case

Heat and power generation in initial stage worst case		
Maximum thermal output	8,000	kW
	27.32	Million BTU/h
Annual heat generation	15,622	MWh/a
	53.30	Billion BTU/a
Maximum electrical output	2,600	kW
	8.88	Million BTU/h
Annual power generation	20,800	MWh/a
	70.97	Billion BTU/a

The sorted load graphs showing the heat generation and the power generation of the planned of the biomass CHP plant to the heat supply in Alternative 2 appear in **Annex IV.A.3-B: Technical Data**.

The layout drawing of the biomass CHP plant in Alternative 2 also appears in **Annex IV.A.3-B: Technical Data**.

IV.A.3.2.3 Alternative 3

Alternative 3 of a biomass CHP plant is made up of a steam boiler with an extraction condensing turbine. The technical parameters for Alternative 3 are as follows:

Table IV.A.3-14: Technical parameters for Alternative 3

Biomass furnace and steam boiler	Value	Unit
Combustion heat performance	22,231	kW
Fuel demand at LHP 2.3 kWh/kg	71,736	t/a
Live steam rated load	21.57	t/h
Live steam temperature at rated load	485	°C
Live steam pressure at rated load	66	bar _{abs}
Max acceptable operation pressure, steam facility	73	bar
Flue gas temperature at chimney	170	°C

In the extraction condensing turbine the steam which is not extracted for heat production is converted into energy in the low-pressure part of the turbo-generator. Thus three different load points – dimensioning (load point 1), average (load point 2) and maximum (load point 3) – are considered in the following:

Extraction condensing turbine	Value	Unit
Live steam mass flow	21.26	t/h
Extraction steam mass flow (load point 1)	17.00	t/h
Extraction steam mass flow (load point 2)	8.81	t/h
Extraction steam mass flow (load point 3)	2.40	t/h
Exhaust steam mass flow (load point 1)	4.26	t/h
Exhaust steam mass flow (load point 2)	12.46	t/h
Exhaust steam mass flow (load point 3)	18.86	t/h
Electrical output (load point 1)	4,125	kW _{el}
Electrical output (load point 2)	4,866	kW _{el}
Electrical output (load point 3)	5,445	kW _{el}

Extraction steam / hot water heat exchanger	Value	Unit
Extraction steam temperature	122	°C
Extraction steam pressure	2	bar _{abs}
Hot water rated load (load point 1)	10,000	kW
Hot water supply temperature at rated load	110	°C
Hot water return temperature at rated load	60	°C
Max acceptable operation pressure, hot water facility	16	bar

The flow sheets displaying the three load points of the water steam process of the biomass CHP plant in Alternative 3 appear in **Annex IV.A.3-B: Technical Data**.

Table IV.A.3-15: Heat and power generation for Alternative 3 for best case

Heat and power generation in final stage (best case)			
Maximum thermal output	10,000	kW	
	34.15	Million BTU/h	
Annual heat generation	35,083	MWh/a	
	119.71	Billion BTU/a	
Maximum electrical output	5,400	kW _{el}	
	18.44	Million BTU/h	
Annual power generation	38,930	MWh _{el} /a	
	132.83	Billion BTU/a	

Table IV.A.3-16: Heat and power generation for Alternative 3 for worst case

Heat and power generation in initial stage (worst case)			
Maximum thermal output	10,000	kW	
	34.15	Million BTU/h	
Annual heat generation	15,622	MWh/a	
	53.30	Billion BTU/a	
Maximum electrical output	5,400	kW _{el}	
	18.44	Million BTU/h	
Annual power generation	41,442	MWh _{el} /a	
	141.34	Billion BTU/a	

The sorted load graphs showing the heat generation and the power generation of the planned of the biomass CHP plant to the heat supply in Alternative 3 appear in **Annex IV.A.3-B: Technical Data**.

The layout drawing of the biomass CHP plant in Alternative 3 also appears in **Annex IV.A.3-B: Technical Data**.

IV.A.3.3 Technical description

IV.A.3.3.1 Fuel storage and transport

The natural wood chips needed for fuel are delivered by trucks only. For truck trailers with a walking floor, hydraulic tipping devices or other unloading devices are not commonly used in the US; a truck dumper is typically used for unloading wood chips.

The entire truck is tipped lengthwise by the truck dumper. The wood chips run out of the trailer into a pit where they are automatically removed and transported to the open-air storage facility.

The truck dumper is included in the investment costs of the biomass CHP plant. The fuel storage concept is based on fuel transport and fuel blending by means of a wheel loader and automatic push floor units.

The open-air wood chip heap serves as an interim storage facility for the biomass CHP plant. From there the fuel is transported to the automatic storage facility by means of a wheel loader.

Figure IV.A.3-1: Push floor unit before operation

The disadvantages of push floor units are as follows:

- Staff required for fuel handling
- Considerable amount of space required due to low-ceiling storage depot (approximately 4 meters)

Figure IV.A.3-2: Automatic fuel storage facility with two push floor units

The following advantages outweigh the disadvantages:

- Quality assurance measures are possible due to acceptance checks
- Impurity separation, especially of ferrous metals, can be accomplished
- Dust collection in the transport area can be established
- Fuel particle size can be guaranteed by means of an overlength separator

It is advisable to deposit different fuel qualities onto different push floors, in particular when using wet wood. Thus, the homogenizing of the fuel is ensured.

So far, two push floor units are planned for each alternative. It would be wise to consider whether the bigger plant size in Alternative 3 and possibly even Alternative 2 requires the installation of a third push floor. We have allowed for the potential required space in our planning.

Subsequently, the fuel is transported to the fuel buffer of the biomass furnace by means of an oscillating conveyor and a drag chain conveyor.

IV.A.3.3.2 Impurity processing (option)

Impurity processing can optionally be carried out as part of the fuel transport.

The processing consists of the following individual components:

- Separator for ferrous metals (overbelt magnetic separator) (optional)
- Overlength separator (pulley / disc filter) (optional)

- Separator for ferrous materials (drum magnet to protect separator for nonferrous materials)
- Separator for non-ferrous materials (optional)

For the planned fuel are natural wood chips, it may be necessary to leave out the separators for ferrous and non-ferrous materials and simply install the overlength separator.

IV.A.3.3.3 Firing system

Push grate furnace

The push grate furnace is the most efficient and economic way of using coarse wood pieces and is used in most plants with a capacity of up to approx. 60 MW of firing.

The advantage of the system lies in the fact that pieces of up to 400 mm length can be incinerated. Only longer pieces have to be sorted out.

Figure IV.A.3-3: Push grate furnace before installation

Figure IV.A.3-4: Push grate furnace in operation

The market offers air- and water-cooled push grates. The water-cooled grate is without a doubt the more advanced solution. Its advantage over the air-cooled grate lies in the fact that the control cycles of grate cooling and fire guiding are completely separate. The added primary air of the air-cooled grate, on the other hand, does not only have to cool down the grate bars but also needs to optimize and control the wood combustion process.

Last but not least, it is a question of cost. Water-cooled grates with their rather complex design and focus on waste combustion are for economic reasons, normally ruled out for wood combustion. For this reason the partly water-cooled grate has been developed. Here, only the stationary elements of the grate are water-cooled. In comparison to the ordinary water-cooled grate, this type of grate is easier and more cost-efficient.

However, an air-cooled grate should be sufficient for this project, considering system size and the natural wet fuel. Any further planning is therefore based on the air-cooled alternative. There is nevertheless the possibility of testing the alternative of a partly air-cooled grate in further steps.

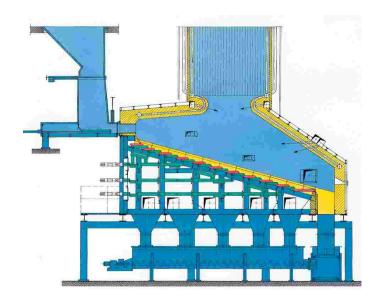


Figure IV.A.3-5: Sectional view of a combustion chamber with push grate furnace

Combustion air

The combustion air is fed in different stages of the combustion chamber. This is of particular importance in order to minimize NOx formation and to reduce flue gas losses (O_2 minimization).

- Primary air (undergrate air) is inlet from the upper area of the boiler house and fed into the individual air zones. Every zone is fitted with a control butterfly valve which ensures an optimum setting for combusting the wood remains.
- The secondary air is injected into the combustion chamber above the actual grate system. The valves are controlled against the O₂ provision.
- The tertiary air can be injected above the grate as the last combustion air stage.
 This combustion in stages ensures an optimum burnout of the flue gases and allows the system to operate with optimum O₂ concentration.

There is the possibility, in connection with secondary air, to feed flue gases directly back into the combustion chamber as well as below the grate by means of a flue gas re-circulation. This is first and foremost meant to reduce the temperature in the combustion chamber, but also positively affects the reduction of NOx formation.

For it is planned to use larger quantities of wet, natural wood due to the lower heating value, the combustion air needs to be pre-heated.

Here, we recommend using a steam-driven air pre-heater. Unlike a flue gas air pre-heater the steam air pre-heater can be left aside in case there is only dry wood to be used at a certain time. This ensures a maximum variability with regard to the fuel quality used.

IV.A.3.3.4 Boiler systems

Thermal oil boiler

Thermal oil boiler systems reclaim the energy in the hot exhaust gases and transfer it to an organic fluid. The thermal fluid allows high temperatures with low pressures in the system and heat consumers.

The main component of the heat recovery system is the exhaust gas heater. The thermal energy in the hot exhaust gases from the firing plant is transferred to the heat transfer fluid.

To burn clean natural fuels, the compact exhaust gas heater is a very good solution. Convection and radiant heater are integrated in one common sheet. This allows a compact and cost-efficient design.

In 2-pass heaters the exhaust gases are reversed only once. In the convection section the exhaust gas flows parallel.

Steam boiler

Steam is generated in a water-tube boiler which is mounted on top of the furnace and therefore requires a tall boiler house.

This multiple-flue boiler system is available as a waste heat boiler with the relevant secondary equipment, such as evaporator, superheater, and economizer, or as a water-tube boiler using angle tube fitting with an overhead steam drum for generating saturated steam.

The boiler is supplied with completely demineralized water in accordance with the technical regulations by means of a feed water device.

The boiler is subject to regular checks and is to be controlled in recurring intervals by an appointed body.

SNCR nitrogen oxide reduction facility (option)

Considerable amounts of NOx loads are emitted, despite an optimized wood combustion taking place on the push grate. If necessary, one way to reduce these emissions by means of an SNCR unit is, nevertheless, described in the following.

The reduction of nitrogen oxide would be carried out as non-catalytic nitrogen oxide reduction (SNCR). A reducing agent is injected into the combustion chamber. Nitrogen and water vapor result from the reduction of the nitrogen oxides.

The reducing agent is stored in the storage tank. The agent is supplied to the customer with tank trucks. The storage tank is filled by means of a hose connection.

IV.A.3.3.5 Dust removal from flue gas

At first, the flue gas is pre-dedusted in a cyclone filter in order to pre-filter particulate impurities and to filter smoldering ash particles.

Subsequently, the dust in the flue gas is reduced by means of an electrostatic precipitator. Depending on the design, particle concentrations in clean gas between 10 and 50 mg/m³ can be achieved with electrostatic precipitators. The planned technology can achieve 20 mg/m³.

Cyclone filter

The cyclone filter is used to pre-de-dust flue gases leaking from the boiler, which contain dust and possibly glowing ash particles. It consists of a cylindrical body with a conic base, tangential crude gas entry pipe, immersion pipe with flue gas entry pipe and the required dust discharging devices.

The dust-loaded flue gas enters the cyclone filter body via the crude gas entry pipe. Due to the tangential design of the pipe the flue gas starts to rotate and thus follows a spiral, downward flow inside the body.

The rotating flue gases are diverted upwards when they reach the lower end of the body and then leave the cyclone body via the immersion pipe fitted inside the body shaft. The dust gathered in the dust collection hopper is discharged using dust discharging devices. As much as possible, flow breakers ensure that the dust is not stirred up again.

Electrostatic precipitator

Solid particles are charged positively under high voltage by means of spray electrodes in the crude gas flow. Due to the resulting electrostatic forces, the positively charged particles are attracted by negatively poled collecting electrodes and deposited there. The deposited particles are then knocked off by regular mechanic impulses and transported outside for disposal via a screw.

The risk of fire or explosions due to larger accumulations of partially burned material in the electrostatic precipitator is a disadvantage. This problem can be minimized by installing a cyclone filter upstream and thus ensuring that glowing wood particles are filtered in time. The operating temperature of electrostatic precipitators is another important aspect to be considered. They can be operated at temperatures of up to 300°C. So as to avoid the De Novo synthesis of dioxins, temperatures should be kept below 200°C.

For this reason, a flue gas temperature of 160-180°C is designed at the boiler outlet; it is also meant to minimize flue gas losses.

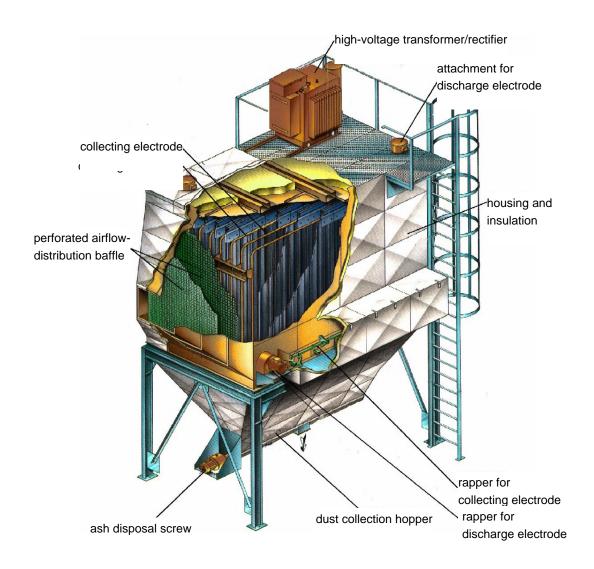


Figure IV.A.3-6: Sectional view of an electrostatic precipitator

Ash disposal

The residues are fed mechanically from the dust collection hopper into an ash container. When it is filled, the ash container is regularly replaced by an empty container and the full one is removed with trucks.

All devices conveying dust, starting with the discharge at plant components that have come into contact with flue gas up to entering the residue silo are insulated and heated so as to avoid operating problems due to sticking.

Depending on the components, the entire ash production will come to about 5% of the dry matter wood input.

Wet ash is one of the residues consisting of bottom ash and water added in the wet ash conveyor (approximately 30% in weight) as well as boiler slag (superheater and economizer). The wet ash is deposited into the ash box and manipulated by means of a wheel loader.

Ash silo (option)

Optionally, a pneumatically fed ash silo can be installed as intermediate storage of residues from the flue gas dust removal.

The residue silo is designed as a cylindrical bulk material silo with conical hopper and rotary star valve at the run-out. The silo is completely insulated and is heated at the cone to ensure an uninterrupted discharge of solids. When the silo is full, the residue is loaded into silo trucks by a loading unit.

The filter ash is automatically transported into a residue silo and removed with trucks.

Flue gas cleaning (option)

At present it is assumed that a complex flue gas cleaning process using absorbent materials such as lignite coke and calcium hydroxide or sodium carbonate with a bag filter does not need to be carried out.

This needs to be checked with the authority.

Emission measurement

The required measuring equipment is set up in a measuring container close to the measuring point. The container will be air-conditioned and heat insulated if required. As far as this is possible, all measuring equipment should come as and be used as self-calibrating equipment working without test gas.

Flue gas discharge

The flue gas from the wood furnace is emitted in the atmosphere from a free-standing self-supporting chimney.

IV.A.3.3.6 Heat and power cogeneration

ORC facility

One of the technologies that has proven its suitability in practical operation for years is ORC technology. About 120 ORC power plants with capacities ranging between 200 kW and 2,200 kW (per module) have been operating in central Europe since 1998, most of which are used in biomass power plants.

The heat supply for the ORC combined heat and power plant takes place indirectly through thermal oil circulation, which receives its energy from energy-rich flue gases, which are generated in biomass combustion. The ORC-module tied-up in the thermal oil circuit functions principally as a conventional steam plant. Silicone oil is used instead of water as working medium in a closed circuit, which is pressurized in a heat exchanger (evaporator) with thermal oil, vaporized and expanded in a steam turbine with generator. The fluid is recooled in a condenser up to the liquid state after it has passed on a large part of its energy to the regenerator and once again supplied to the evaporator through a feeding pump. The heat released during condensation is conveyed to a hot-water circuit and used for heating buildings or other technical processes.

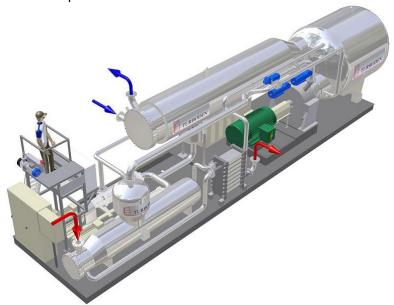


Figure IV.A.3-7: View of an ORC module

The medium voltage switchgear distributes the electrical energy from the generator of the ORC turbine to the auxiliary power transformers of the biomass CHP plant and exports it into the medium voltage transformer.

The emergency power system is meant to ensure a safe shutdown of the biomass CHP plant in case of a blackout.

The low voltage switchgear supplies the electric consumers of the biomass CHP plant with electric energy.

Water steam process with steam turbo-generator

The piping system is set up to ensure the boiler is operating faultlessly even if the turbine fails. Pneumatically controlled turbine bypass valves are used to ensure a safe supply of pressure stages both above and below atmospheric pressure. Thus, the operation of the bypass valves is possible in all load levels and pressure stag-

es (dry start-up of the superheaters). Furthermore, in case the turbo-generator trips, the biomass CHP plant can continue to operate smoothly.

There are different designs of steam turbo-generator available on the market. The present capacity suggests using a reaction type multi-stage steam turbine.

Heating type steam turbine

In a heating turbine process (Alternative 2) the power generation is directly linked to the heat generation (*i.e.* a reduced heat production results in a reduced power production and vice versa). Therefore, the biomass CHP plant is equipped with a cooler for the release the waste heat to the ambient atmosphere in order to enable a maximum power generation at any time.

The hot water needed for the district heating system is generated by the condensing of the exhaust steam from the turbine and the heat exchange in a heat condenser.

The heat condenser is fitted in the turbine room preferably located underneath the turbine.

Extraction condensing type steam turbine

In a process applying an extraction condensing turbine (Alternative 3) the power generation is reversely linked to the heat generation (*i.e.* a reduced heat production results in a increased power production and vice versa). This is because the less steam extracted from the turbine for the heat generation, the more steam expanded in the low-pressure part of the turbine, thus, more power is generated.

The turbine exhaust steam is led from the turbine house and condensed in an air-cooled condenser for the release the waste heat to the ambient atmosphere in order to enable a maximum power generation at any time. Therefore the biomass CHP plant is equipped with an air-cooled condenser which is set up for the maximum steam capacity.

The condensate is delivered from the hotwell of the air-cooled condenser to the condensate container by means of pumps.

The hot water needed for the district heating system is generated by the condensing of the extraction steam from the turbine in a heat exchanger.

Condensate drain from the heat exchanger takes place in free incline to the condensate container. From there, the condensate is pumped into the degasser.

IV.A.3.4 Feedwater supply

The feedwater supply of the boiler is set up as a physical water treatment whose main component is a reverse osmosis (RO) unit.

The completely demineralized feedwater is supplied to enable alkaline operation mode.

IV.A.3.5 Peak load and redundancy boiler

Fossil fired peak load and redundancy hot water boilers are envisaged in order to provide for both an economic peak load supply and a year-round operation of the biomass CHP plant.

IV.A.3.6 Electrical equipment of the plant

The electrical equipment of the biomass combined heat and power plant essentially consists of the following elements:

- Connection to medium-voltage power grid
- Medium voltage transformer
- Medium voltage switchgear
- Auxiliary power transformer
- Low voltage switchgear
- 110 VDC battery system and uninterrupted power supply (UPS)
- Grounding system, potential equalization, insulation, measures to ensure electromagnetic compatibility (EMC)
- Lightning protection system
- Low voltage distribution board HVAC
- Electrical installation HVAC
- · Lighting, safety lighting
- Data processing and telecommunications system
- Fire detection system
- CCTV

IV.A.3.7 Emergency power system

The emergency power system is meant to ensure a safe shutdown of the biomass CHP plant in case of a blackout. It is needed for safe shutdown of the thermal oil boiler.

For the following reasons it is unlikely that an emergency power system is needed for the steam boiler:

- The boiler needs to be run through an evaporation test
- Due to low pressure losses in the flue gas system, the extraction of the flue gas from the combustion chamber can be ensured by natural draft.

IV.A.3.8 Auxiliary systems of the plant

The following auxiliary systems are envisaged for the biomass CHP plant:

- Compressor unit
- Heating, ventilation, and air conditioning

IV.A.3.9 Profitability assessment and recommendation

For each of the three alternatives a cost-benefit analysis was executed in approximate and static terms to enable an economical comparison and a recommendation for the most promising alternative based on this first assessment.

The cost-benefit analysis of each of the three alternatives is based on the general conditions aforementioned in **Chapter IV.A.3.1**.

The profitability assessments for the alternative concepts appear in **Annex IV.A.3-C: Financial Data**.

The goal of cost-benefit analysis is to provide for an economical comparison of the alternative concepts by just one single characteristic figure which is the minimum specific heat generation costs.

The following table displays the outcomes for the minimum required specific heat generation costs of each of three alternatives for the best case (design case).

Table IV.A.3-17: Specific heat generation costs for Alternatives 1-3

Minimum specific heat generation costs (best case)				
Alternative 1	41.15	EUR/MWh		
	18.09	USD/Million BTU		
Alternative 2	44.15	EUR/MWh		
	19.41	USD/Million BTU		
Alternative 3	40.10	EUR/MWh		
	17.63	USD/Million BTU		

Obviously, the high-pressure steam boiler in combination with the extraction condensing turbine (alternative 3) gives the least specific heat generation costs. The combination of the thermal oil boiler with the ORC module (Alternative 1) results in slightly higher specific heat generation costs while those of the combination of the high-pressure steam boiler with the heating turbine (Alternative 2) are significantly higher.

Thus, the comparison estimates Alternative 3 as the most promising concept for the project. But from an economical point of view Alternative 3 and Alternative 1 are fairly equivalent.

From a technical point of view, all three alternatives represent reliable technologies that have already proven their suitability in practical operation for years (ORC facility) or even decades (steam turbines).

However, Alternative 3 is the only concept that allows for increased power generation when the heat demand is lower than estimated, e.g. in the initial stage of the project (worst case). This gives Alternative 3 a clear advantage over the others.

IV.A.4 Potential Project Sites

IV.A.4.1 Utility Demands and Annual Requirements

The proposed biomass combined heat and power (CHP) plant is intended to operate with one 10 MW output biomass combined heat and power system with a peaking 5 MW output natural gas combined heat and power system. These systems have requirements for potable, softened water, power, natural gas or diesel fuel oil, wastewater discharge, and steam distribution.

The utility demands are comprised of facility and process demands. Process demand values have been obtained from Seeger via Lahmeyer International GmbH, and have been converted from metric to imperial units for use in evaluating demands. Facility demands are estimated as a percentage of process demands based on the size of the plant. The facility demands are a rough estimate only; however, the process demands are generally more significant in terms of estimation of sizing for required utility connections. Steam distribution sizing has not been evaluated at the time of this report. No existing steam distribution currently exists for the heat component of the CHP systems.

Annually, the facility consumes 5.3 million gallons of water, 4800 MW of electricity, 12 million cubic feet of natural gas, and discharges 2 million gallons of wastewater.

Table IV.A.4-1: ESTIMATED UTILITY PEAK DEMANDS

	Estimated Process		Estimated Facility		Estimated Total	
Instantaneous Peak Value	Peak Demand		Peak Demand		Peak Demand	
Water Consumption	26.4	gal/min	15	gal/min	50	gal/min
Power Demand	1,500	kW	200	kW	1,700	kW
Natural Gas Consumption	56,844	SCFh	1,000	SCFh	58,000	SCFh
Wastewater	16.3	gal/min	15	gal/min	35	gal/min

See annexes for full conversion from provided metric data, clarifications, and assumptions. Note: no facility demands are included in the above table. Metric process data provided by Lahmeyer International GmbH.

Table IV.A.4-2: ESTIMATED ANNUAL UTILITY DEMANDS

Annual Process Demand			
Water Consumption	5,280,000	gal/year	
Power Demand	4,800	MW/year	
Natural Gas Consumption	11,940,000	SCF/year	
Wastewater	2,020,000	gal/year	

Values per year. See appendices for full conversion from provided metric data, clarifications, and assumptions. Note: no facility demands are included in the above table.

IV.A.4.1.1 Natural Gas Connection

The utility Natural Fuel Gas Company provides Smethport, PA with natural gas. While natural gas pressure data is considered intellectual property by the utility, most suppliers are able to provide at least 2 psi at the street and potentially more depending on the anticipated demand and use. Should natural gas not be available with sufficient pressure or quantity on site, a booster pump system can be designed.

IV.A.4.1.2 Water Main Connection

The water mains sizes proximate to the sites vary between 8" and 15" diameter, and are generally adequate in size for the required flow of 50 gal/m. A hydrant testing will be required to determine if the 58 psi (133 ft of water) demand can be met by the existing water main. A water booster pump can be designed to be able to meet the requisite demands of the process.

IV.A.4.1.3 Electrical Power

Electrical power connections for the CHP plant consist of an operational service (parasitic load) of the facility, and generated electrical power output. Each of the two power considerations are discussed as follows:

CHP Plant Power

The CHP plant demand load of 1700kW can be supported by a pad mounted 2500kVA 12.47kV/480V transformer which would be serviced by existing Smethport Borough (Borough) aerial 12.47kV lines. A black start standby natural gas generator should be considered to enable the CHP facility to restart and operate in the event of a total First Energy grid outage.

CHP Generation

The CHP plant will be capable of generating of approximately 4.2MW of available electrical power. This power can be utilized to support the present day Smethport Borough loads in addition to providing up to approximately 2.5MW of energy avail-

able for export to the utility grid. The historical Borough electrical demand is 2.9MW peaking in the early summer period. The average Borough load is estimated to be 2.2MW. The Borough is currently serviced by a 12.47kV loop service with the point of connection (POC) near the proposed CHP site 2. The interconnection of the CHP plant with capacity to export power to the utility grid is governed by the transmission operator (TO) Penelec and the regional transmission organization (RTO) PJM. A one line diagram of the proposed CHP to grid interconnection is depicted in Figure 4. This figure depicts the required step up or isolation transformer as well as switchgear and breakers to accomplish the interconnection. The interconnection process will require extensive and somewhat lengthy application and review process with both First Energy and PJM. The loop configuration connection of the First Energy 12.47kV lines provides a flexible utility source for the Borough, but may also complicate the interconnection process. In the event of a trip of either utility source capable of feeding the Borough, First Energy and or PJM may require upgrades and transfer trip mechanisms to protect and isolate the utility network from the CHP power. Additional utility line or point of interconnection (POI) upgrades may be required as a result of the review and approval process with the TO and PJM.

IV.A.4.1.4 Wastewater

The wastewater mains sizes proximate to the sites vary between 8" and 15" diameter, and are generally adequate in size for the required wastewater discharge. However, verification of temperature, quantity, and quality of wastewater discharge have not been confirmed or coordinated with the local utility.

IV.A.4.2 Overall Utility Requirements and Site by Site Evaluation

IV.A.4.2.1 Site 1

Site 1 is proximate to Route 6 and has reasonable access to natural gas utility lines, an 8" diameter water main, and an 8" diameter wastewater main. Aerial 12.47kV Borough Power is available along Route 6 as well.

- 8" diameter water main is generally adequate for the anticipated demand
- 8" diameter wastewater main is generally adequate for the anticipated demand
- Natural gas is proximate and generally available, although the pressure and flow availability are being confirmed

Electrical power is available that will likely support the CHP plant load. A new service consisting of a pad mounted 12.47kV/ 480V transformer could be installed to support the plant if necessary. Utilizing the existing Borough electrical supply lines as a conveyance to export power from the CHP is questionable. This location is at the farthest point from the utility supply in the Borough electrical network. A detailed load flow study would need to be conducted to determine if the existing Borough network of various conductor sizes and protective devices would be capable of properly supporting the new directional power characteristics of the CHP plant during all anticipated load conditions. The results of the load flow study may indi-

cate that various sections of the Borough power system may need to be upgraded to accommodate this location.

IV.A.4.2.2 Site 2

Site 2 is proximate to East Street and has a long line installation for natural gas. Local power is available from a Penn Electric 12.5 kV line, and also has an available 8" water main onsite, as well as a 15" sanitary on site.

- The natural gas line required will be long, according to the natural gas utility.
 Pressure and flow will need to be confirmed and possibly boosted by additional equipment.
- An 8-inch water main onsite is generally adequate for the anticipated demand
- A 15-inch sanitary main onsite is generally adequate for the anticipated demand
- The Penn Electric substation is local to this site

IV.A.4.2.3 Site 3

Site 3 is proximate to Site 2 on East Street and will have a similar long line installation for natural gas. The local substation is further away from the Penn Electric 12.5 kW line and there is no onsite available sanitary. The 8-inch water main is onsite.

- The natural gas line required will be long, according to the natural gas utility.
 Pressure and flow will need to be confirmed and possibly boosted by additional equipment.
- An 8-inch water main onsite is generally adequate for the anticipated demand
- No available onsite sanitary main

The Penn Electric substation is further away than at Site 2

IV.A.5 Site Plan and Facility General Arrangement

Based upon the initial feedback from the Borough and Borough advisory team, Site 3 will be the site that is evaluated for general arrangement and site plan development. Site 3 – parcel number 24-0280107 is directly to the East of Site 2 with the closest intersection of East Street and Railroad Avenue. The site has a significant amount of Acreage that is consumed by the National Wetland Inventory; however has sufficient acreage for the proposed facility.

The General Arrangement for the facility can be found in the attached Figure 3.1 General Arrangement (GA). The General Arrangement for the facility was provided by Seeger based upon the concept level process design. The GA consists of the following attributes:

- Road access for wood deliveries, personnel and operations staff, and deliveries
- · Truck unloading facilities
- Wood storage facilities
- · Push floor conveyors
- Power house
- Outbuildings
- · Boiler house
- · Ash removal and particulate removal area
- Heat distribution
- Boiler room

Final design details will be considered to add areas for fire water storage and office/break areas.

IV.A.6 Environmental Impacts, Evaluations, and Permits

IV.A.6.1 Right-To-Build Permitting & Approvals

A tabular summary of potential local, State and federal regulatory programs applicable to the construction of the proposed project is included in Appendix IV.A.6-A. The tabular summary identifies the type of permit, regulated activity, jurisdictional agency, estimated regulatory review timeframes, and an indication of the programs relevancy to the specific site (*i.e.*, Site 1, 2, or 3).

Relevant permitting programs can be grouped into two general categories: 1) activity-specific, and 2) site-specific.

Activity-specific permitting programs. Activity-specific permitting programs are relevant to the type of activities associated with the project. For example, the project, regardless of the location, will result in the generation of air emissions, which will require the acquisition of an air permit from the Pennsylvania Department of Environmental Protection (PADEP). Other examples of activity-specific permitting programs include: storage tank registrations, NPDES permits, residual waste permits, and local right-to-build (zoning) related approvals. Activity-specific permit programs are tagged as such in the permit summary table provided in Appendix IV.A.6-A (A = activity-specific).

Site-specific permitting programs. Site-specific permitting programs are relevant to the individual baseline site characteristics (see Section IV.A.6.2) and, consequently, have a greater impact on the site selection process than activity-specific permitting programs. For example, the location of the limits of construction on a particular site within a 100-year flood boundary or within regulated wetlands will require review by jurisdictional regulatory agencies in a discretionary review proc-

ess; whereas a site absent of such characteristics would forgo such reviews. The additional reviews can increase the overall schedule and cost; with no assurance that such discretionary approvals will be obtained. Consequently, these types of permits have a greater impact on making an informed decision in the site selection process. Site-specific permitting programs are also tagged in the permit summary table included as Appendix IV.A.6-A (S = site-specific).

IV.A.6.2 Baseline Environmental Characteristics

Baseline environmental data covering the project sites was compiled from existing, readily available sources including internet-based Geographic Information System (GIS) resources. Data for the following resources were obtained:

- 100-year Flood Zones
- National Wetland Inventory4
- Natural Heritage Inventory Sites (see Appendix IV.A.6-B)
- Soils (see Appendix IV.A.6-C)

The data and sources are illustrated on Figures 1.1 through 1.4, and summarized by site below. Desk-top resource reviews were supported by on-site reconnaissance. Site photographs are included in Appendix IV.A.6-D.

Site 1. Figures 1.1, 1.2 and 1.4 consist of an aerial photograph of Site 1 overlaid by environmental resource data obtained through readily available published sources. The data indicates that the limits of construction on Site 1 **do not include** a 100-year floodplain boundary or other protected water bodies (including wetlands), or known archaeological or cultural resources (*i.e.*, sites listed on the National Register of Historic Places).

A review of web-published soil data (http://websoilsurvey.nrcs.usda.gov/app/) (see also Figure 1.1) indicates that the site is predominantly overlain by Albrights silt loam (AbB), with the following predominant soil characteristics:

- 3 to 8 percent slopes
- Moderately well drained
- Depth to restrictive layer: 18 to 32 inches to fragipan5

⁴ National Wetland Inventory (NWI) maps are published by the United States Fish & Wildlife Service (USFWS). NWI maps are based on interpretation of high altitude aerial photograph and are used as an indication of potential federal wetlands. The presence or absence of federal wetlands should be field-verified through the performance of a wetland delineation conducted by a wetland biologist in accordance with the United States Army Corps of Engineers' "Wetland Delineation Manual" (1987).

⁵ A dense, natural subsurface layer of hard soil with relatively slow permeability to water, mostly because of its extreme density or compactness rather than its high clay content or cementation.

Depth to water table: 12 to 30 inches

· Frequency of flooding: none

Site-specific soil borings would be necessary to identify design/constructability-related issues including building code compliance.

Site 2. Figures 1.1, 1.3 and 1.4 consist of an aerial photograph of Site 2 overlaid by environmental resource data obtained through readily available published sources. The data indicates that the limits of construction on Site 2 **include** a 100-year floodplain boundary⁶, as well as potential federal wetlands⁷; no known archaeological or cultural resources were identified. The acquisition of permits would be necessary if work is proposed within these areas (see Appendix IV.A.6-A).

A review of web-published soil data (http://websoilsurvey.nrcs.usda.gov/app/) (see Figure 1.1) indicates that the site is predominantly overlain by Atkins silt loam (At) and Pope Loam (Po), with the following predominant soil characteristics:

Atkins Silt Loam (At)

- 0 to 3 percent slopes
- Poorly drained
- Depth to restrictive layer: 60 to 99 inches to lithic bedrock
- Depth to water table: 0 to 12 inches
- · Frequency of flooding: frequent

Pope loam (Po)

- 0 to 3 percent slopes
- · Well drained
- Depth to restrictive layer: >80 inches

⁶ Work within the 100-year floodplain would require authorization from the local floodplain administrator. Floodplain development would be required to meet the "no adverse affect" criteria (*i.e.*, no physical damage to an adjoining or other property). To comply, proposed new facilities within the floodplain would need to be constructed on foundations with finished floor elevations at least two-feet above the base flood elevation or otherwise flood-proofed. Additional analysis/modeling might be necessary, as well as potential mitigation to provide for compensatory storage to eliminate a potential rise in the 100-year flood elevation due to flood displacement by new buildings/structures.

⁷ Construction within a federal wetland requires authorization from the United States Army Corps of Engineers (USACE). Depending upon the extent of encroachment, the application could consist of a project-specific permit or authorization under the USACE's Nationwide Permit (NWP) program. An application or notification (in the case of a NWP) to the USACE would include a federal wetland delineation, as well as documentation that the proposed encroachment is the "Least Environmentally Damaging Practicable Alternative." Permanent encroachments (*i.e.*, loss of wetlands) may require submission and approval of a compensatory mitigation plan that includes the creation of wetlands or an acceptable alternative to replace the functions and values of the lost resources.

- Depth to water table: >80 inches
- Frequency of flooding: occasional

Site-specific soil borings would be necessary to identify design/constructability-related issues including building code compliance.

Site 3. Figure 1.1, 1.3 and 1.4 consist of an aerial photograph of Site 3 overlaid by environmental resource data obtained through readily available published sources. The data indicates that the limits of construction on Site 3 **do not include** a 100-year floodplain boundary or other protected water bodies (including wetlands)⁸, or known archaeological or cultural resources (*i.e.*, sites listed on the National Register of Historic Places).

A review of web-published soil data (http://websoilsurvey.nrcs.usda.gov/app/) (see Figure 1.1) indicates that the site is predominantly overlain by Albrights silt loam (AbB), with the following predominant soil characteristics:

- 3 to 8 percent slopes
- · Moderately well drained
- Depth to restrictive layer: 18 to 32 inches to fragipan
- Depth to water table: 12 to 30 inches
- Frequency of flooding: none

Site-specific soil borings would be necessary to identify design/constructability-related issues including building code compliance.

IV.A.6.3 Regulatory Agency Consultation

Pennsylvania Natural Diversity Inventory. It is the policy of the PADEP to ensure that permit applications received by the Department and County Conservation District staff (under delegated duties from PADEP) are coordinated through the Pennsylvania Department of Conservation and Natural Resources' (DCNR) Pennsylvania Natural Diversity Inventory (PNDI). The PNDI is the main source of information utilized by PADEP during the permit application review process for the protection of special concern species and resources. The PNDI coordination effort facilitates the avoidance and minimization of impacts to endangered and threatened and special concern species and resources (*i.e.*, plant and animal species classified as rare, tentatively undetermined or candidate as well as other taxa of conservation concern, significant natural communities, special concern populations [plants] and unique geologic features) in the Commonwealth of Pennsylvania. Coordination is conducted during the permit review and evaluation process.

⁸ Potential federal wetlands, as indicated on the National Wetland Inventory mapping, exist on Site No. 3 outside of the proposed limits of construction. Site reconnaissance should be conducted to verify the presence or absence of regulated wetlands.

The PNDI Internet Database (http://www.gis.dcnr.state.pa.us/hgis-er/Login.aspx) provides a preliminary method of screening projects for potential impacts on resources of special concern. A preliminary review of the PNDI Internet Database was conducted on a geographical area encompassing the three alternative sites. A summary of the review is provided below, with the complete results (PNDI Project Environmental Review Receipt) provided as Appendix IV.A.6-E. The results are identical among the three sites and, consequently, are not a differentiator between them.

- PA Game Commission No known impact⁹; no further review required.
- DCNR No known impact⁵; no further review required.
- PA Fish and Boat Commission (PFBC) Potential impact; further review required. (Note: The preliminary screening identifies two PFBC special concern species: Elktoe (*Alasmidonta marginata*) and Creek Heelsplitter (*Lasmigona compressa*) (see Appendix IV.A.6-F). Both species are freshwater mussels found in medium to large size streams, but are most common in smaller streams (http://www.naturalheritage.state.pa.us/Factsheets.aspx). Based on the type of activities proposed (*i.e.*, no work in streams), as well as mitigation necessary to minimize potential erosion and sedimentation impacts on adjacent streams, significant adverse impacts on these species are not anticipated).
- USFWS No known impact¹⁰; no further review required.

This review is based on the project information that was entered. The jurisdictional agencies and PADEP require that the review be redone if the project area, location, or the type of project changes. If additional information on species of special concern becomes available, this review may be reconsidered by the jurisdictional agency.

PA Historical & Museum Commission (PHMC) Cultural Resource Notice. The PHMC advises and assists federal and State agencies in completing its responsibilities set forth in Section 106 of the National Historic Preservation Act and the Pennsylvania History Code. The consultation/coordination process facilitates a review of potential project-related impacts on known resources listed on the State and National Register of Historic Places, as well as potential impacts on unknown cultural and/or archaeological resources in areas identified as sensitive to the presence of such resources. The process is initiated by the submission of a review form and supporting documentation to the PHMC (see Appendix IV.A.6-G). Supporting documentation may include a record of disturbance form.

Known cultural resources are illustrated on Figure 1.4. The information is based on a PHMC database that can be found on the internet at

⁹ No impact is anticipated to threatened and endangered species and/or special concern species and resources.

¹⁰ No impacts to federally listed or proposed species are anticipated. Therefore, no further consultation/coordination under the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531 *et seq.* is required.

http://www.portal.state.pa.us/portal/server.pt/community/crgis/3802. The data indicates there are no known sites listed or eligible for listing on the State or National Registers of Historic Places located on or contiguous to the three alternative sites.

As a publicly-funded program, the project sponsor will be required to consult with the PHMC to obtain site clearance indicating the project will not adversely impact cultural resources. Consultation may involve a cultural resource investigation, or at a minimum documentation of significant prior on-site disturbance. Whereas Sites 1 and 3 are characterized as undeveloped sites with prior agricultural uses¹¹, portions of Site 2 have undergone extensive subsurface disturbance as a result of gravel/borrow pit operations.

IV.A.6.4 Permitting Schedule

Based on the information summarized in the preceding subsections, a GANTT chart has been prepared that illustrates approximate regulatory review timelines (based on anticipated permits and reviews) for each of the three alternative sites. The information, provided in Appendix IV.A.6-H, indicates that the shortest approval timeline is associated with Sites 1 and 3, which is based predominantly on the absence of wetlands and floodplains within the anticipated limits of construction, and the associated regulatory reviews.¹²

IV.A.6.5 Approvability

While the overall site selection will be based the balancing of a number of considerations, "approvability" (*i.e.*, the ability to obtain permits) should be an important element of that process. Approvability, as a process, is based on a number of tangible and intangible factors including:

- Number and type of permits
- · Regulatory agency requirements
- Sufficiency of information
- · Concerns, issues, and perceptions of decision-makers.

The analysis summarized below represents a "high altitude" review of the anticipated regulatory approval process associated with each site. General conclusions are based on an assumption that the level of information is relatively the same for each site, as outlined in other sections of this report.

1

¹¹ Agricultural activities (*i.e.*, disking of fields for cultivation) do not typically constitute sufficient subsurface disturbance to preclude a cultural resource investigation.

¹² Site control was not considered in the GANTT chart analysis, but should be a factor in the overall decision-making process. It is noted that Site No. 1 is publicly-owned, while Site Nos. 2 and 3 are held in the private sector.

Number and type of permits. As indicated on the tabular summary of potential permits (Appendix IV.A.6-A), Sites 1 and 3 have the same type and number of permits. Depending upon the limits of construction, Site 2 may also require acquisition of a federal wetland permit (United States Army Corps of Engineers, USACE) and/or local floodplain development permit.

Regulatory agency requirements. Regulatory agency requirements associated with permitting Sites1 and 3 are substantially similar. Applicable approvals are predominantly related to local zoning-related processes (*i.e.*, site plan approval, *etc.*). Consequently, approval of the project will likely be a locally lead/controlled endeavour.

Depending upon the limits of construction and presence of federally regulated wetlands, Site 2 may require review and approval by the USACE. The addition of the USACE as part of the right-to-build permitting process adds discretionary authority, which will likely influence design, cost, and schedule. For example, if the site layout encroaches upon federal wetlands, the USACE will require that the site layout represent the "Least Environmentally Damaging Practicable Alternative" (LEDPA); the USACE will not issue a permit if there is a known lesser impacting practicable alternative. In addition, for permanent wetland encroachments (*i.e.*, resulting in the loss of wetlands, functions and values), the USACE will likely require design, approval, implementation, and monitoring of a compensatory mitigation plan.

Sufficiency of information. Certain sites may require the compilation and/or development of additional data and information. Proximity to sensitive receptors may require additional reviews (*i.e.*, noise assessment, visual assessment, *etc.*). The location of some sites may require a more detailed review of stormwater or traffic. Due to the proximity of the sites to each other, the significance of this consideration may be minimized; and for the purposes of this assessment, the sufficiency of information was considered to be the same for each site.

Decision-maker perceptions. While tangible considerations in the permitting process are more often focused upon (see above), intangible considerations such as decision-maker opinions and perceptions can often be the stumbling blocks to moving programs forward. Based on the information reviewed, as well as the proximity of the sites to each other, it is assumed that decision-maker perceptions of the project regardless of the site are similar. Decision-maker perceptions of each individual site are currently unknown. Regardless of the site selected, it will be important to engage decision-makers and other stakeholders early in the process to understand potential project or site specific concerns and issues, compile the necessary information to understand issues and alleviate concerns, and appropriately mitigate potential adverse impacts.

IV.A.7 Capital Cost Estimate

The capital costs for the different parts of the project are shown in **Table IV.A.7-1**. Detailed information for investment costs could also be found in **Annex IV.A.8-A**.

Table IV.A.7-1: Project Capital Cost

Cost Position	Investment Costs
1. Technology	
Biomass Heat and Power Plant (Variant 3) ¹³	22,236,997 USD
Distribution System pipe construction (Best Case) ¹⁴	19,765,180 USD
Domestic hot water preparation storage charging system ¹⁴	2,370,160 USD
Customer interface compact-station ¹⁴	3,394,180 USD
Pressure Maintenance ¹⁴	112,200 USD
Circulating pumps ¹⁴	538,500 USD
2. Real Estate	200,000 USD
3. Construction ¹³	
Buildings ¹³	3,749,915 USD
Civil engineering + outside facilities ¹³	925,000 USD
Utilities ¹³	850,360 USD
4. Engineering Services	
Biomass Heat and Power Plant (Variant 3) ¹³	1,664,962 USD
District Heating Network (complete) ¹⁴	2,618,022 USD
Design and Construction Management Services ^{Fehler! Textmarke nicht} definiert.	177,536 USD
6. Others	
Contingency Allowance Fehler! Textmarke nicht definiert.	177,536 USD
Contingency Biomass Plant + District Heating Network	1,469,514 USD
Total	60,250,062 USD

¹³ See Annex IV.A.3-A - Financial Analyses Var3.pdf and Annex IV.A.5.

¹⁴ See chapter IV.A.2.3. Values for best case.

IV.A.8 Financial Analysis

After termination of the examinations concerning the district heating network and the biomass CHP plant, the project was analyzed regarding its financial viability by the means of a financial analysis.

The purpose of the financial analysis was to establish the financial yield of the project. Hence, it addresses the revenue structure of the project from the point of view of an equity investor and the bankability of the project. In addition to the project costs, the financial analysis also took financing costs into consideration.

For the execution of the financial analysis a purpose-fit spreadsheet model (feasi-bility level) – based on models developed at Lahmeyer International for project appraisal – was fleshed out.

IV.A.8.1 Input Data

Essential input data is shown in the following section.

IV.A.8.1.1 Investment Costs

The Investment Costs were taken from **Chapter IV.A.7** and could also be in **Annex IV.A.8-A**.

IV.A.8.1.2 Time assumptions

Project Start: 2011

Project lifetime: 30 years

Due to the life time of the district heating network, a minimum project lifetime of 30 years was assumed. For the biomass CHP plant a general overhaul after 15 years is planned with 100% of the investment costs. This means that the costs of a complete new biomass CHP plant set.

Project end: 2041

IV.A.8.1.3 Economics

Currency

Euro/USD rate: One Euro equals 1.5 USD (fixed)

<u>Subsidies</u>

Applied Subsidy: 5.5 Mio. USD (already requested)

• Tax Credit: 30% of investment for biomass CHP plant

(but not for district heating network)

Escalation rates

Annual price rise: 0%

• Inflation: 0%

Weighted average cost of investment (WACC)

• WACC: 6.84% (calculated)

Tariffs and prices

Power feed-in tariff: 0.13 USD/kWh (including rights on RECs)

Price per REC: 0.0 USD/kWh

Power supply: 0.08 USD/kWh

Biomass CHP plant

Wood chip price: 35 USD/t (2.3 kWh/t; including transportation)

Ash disposal: 45 USD/t (grate and fly ash; including transportation)

• Water treatment: 6 USD/m³

Wages

Average wage: 60,000 USD/a per employee

Detailed input data for the financial analyses could be found in Annex IV.A.8-B.

IV.A.8.2 Outcomes

Besides the investigation of the annual costs of the project, the main objective of this analysis was the determination of the specific heat costs (in USD/MWh). This parameter was determined assuming a granted income for electricity generated by the plant and the expected profitability of the project from the investor's point of view, based on minimum expectations for financial indicators as the project internal rate of return (IRR) and return on equity (ROE).

Table IV.A.8-1 shows the values for spec. heat costs, Internal Rate of Return (IRR; pre tax) and Return on Equity (ROE) as the major outcomes of the financial analyses of the feasibility study.

Table IV.A.8-1: Major outcomes of Financial Analyses

Project IRR (pre tax)	6.84%
ROE	18%

The most important input values and assumptions were varied to show their influence on the economy of the project.

Table IV.A.8-2: Sensitivity Analyses Specific Heat Costs Biomass CHP Plant [USD/MWh]

Variation	-20%	-10%	+/- 0%	+10%	+20%
Wood Chip Price	68	75	83	91	98
Power Feed in tariff	114	99	83	68	52
Investment costs			<mark>83</mark>		
<u>Subsidies</u>			<mark>83</mark>		
Major Overhaul			83		
(Properties)			83		

Main outcomes of the financial analyses appear in Annex IV.A.8-C - Operational Revenues and Costs and in Annex IV.A.8-D - Cash Flow Statement.

IV.A.8.3 Conclusions and Recommendations

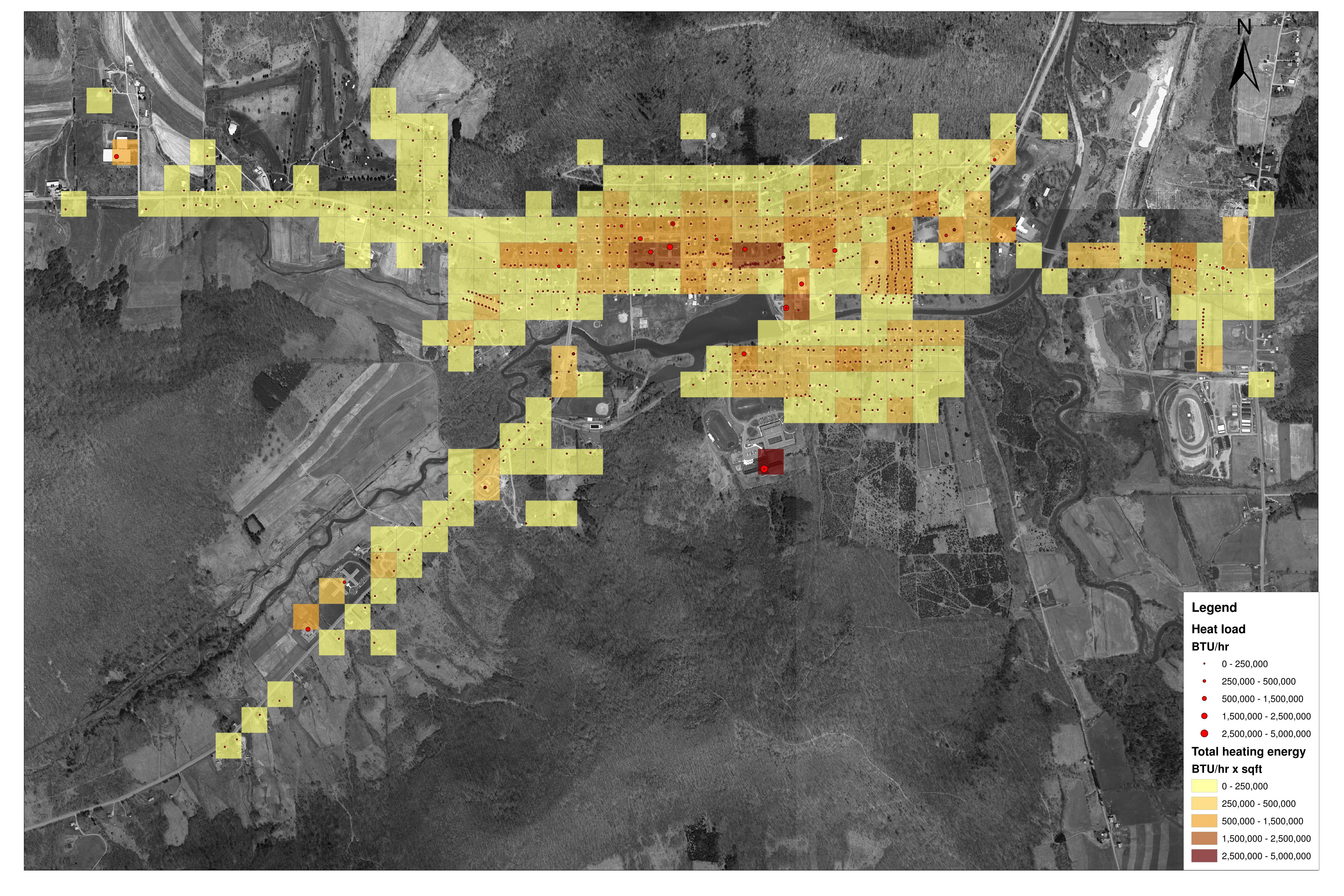
Besides the investigation of the annual costs of the project, the main objective of this analysis was the determination of the specific heat costs (or initial heat costs; in USD/MWh). This parameter was determined assuming a granted income for electricity generated by the plant and the expected profitability of the project from the investor's point of view, based on minimum expectations for financial indicators as the project internal rate of return (IRR) and return on equity (ROE).

This value calculated for the specific heat costs in line with this analysis will be the minimum amount to cover all of the occurring costs while satisfying the investor's expectations on project profitability.

In the next phase of the project, after termination of the feasibility study, the ascertained average specific costs for the heat from the biomass CHP plant should be compared with the real specific heat costs of each single property or property group of Smethport.

To give an idea for this comparison, the specific heat costs for an average residential house in Smethport were calculated, since residential buildings are the dominant building group in Smethport. The calculation was done for an existing house (only variable and fixed costs) and for the assumption of installing a new heating facility (additionally capital costs).

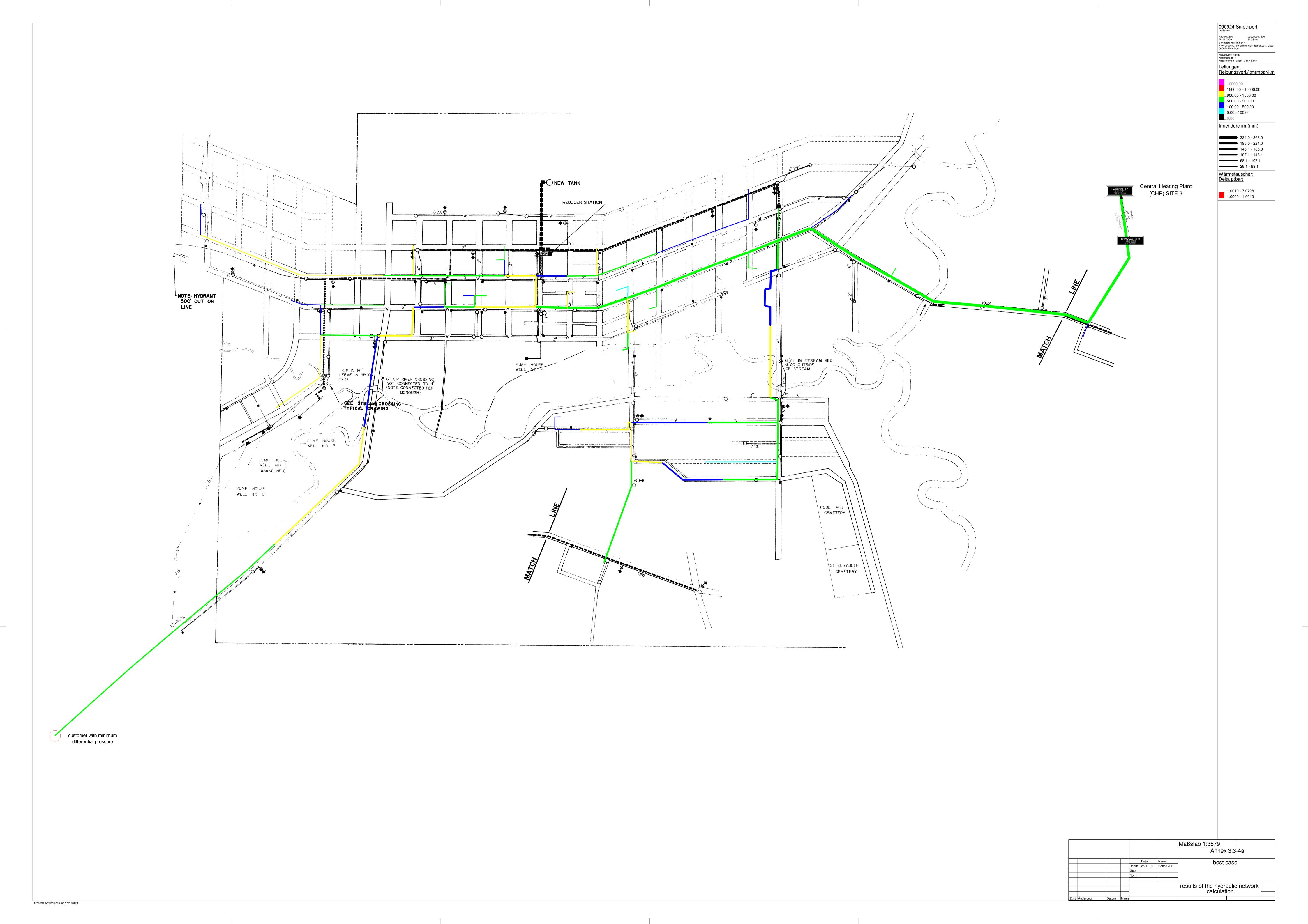
Table IV.A.8-3: Typical characteristics for an average residential house in Smethport

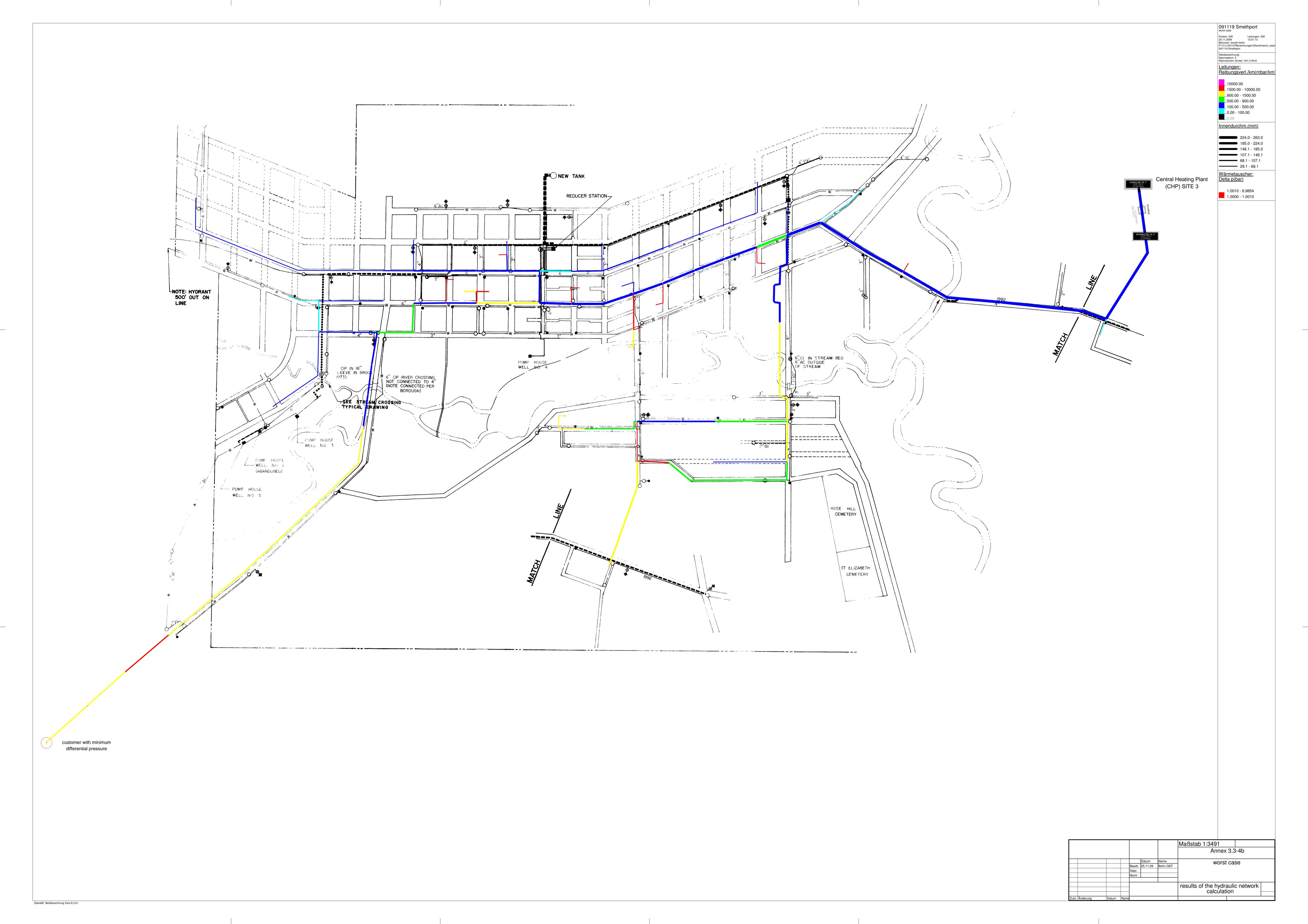

Specific heat costs - New	100 USD/MWh
Specific heat costs - Old	70 USD/MWh
Square footage	150 m²
Annual heat demand	30,000 kWh/a

The results for a typical residential house in Smethport are 70 USD/MWh for an existing and 100 USD/MWh for a new heating facility. Assuming that all residential houses in Smethport will be in the situation that they will have to replace their existing heating facility in the next thirty years, it seems that the price to beat is the 100 USD/MWh for a new heating facility. Against this background the calculated specific heat costs for the biomass CHP plant of 83 USD/MWh look competitive.

- V Recommendations
- V.A Recommended Plan
- V.B Project Implementation
- V.C Project Schedule

The detailed preliminary project schedule could be found in Annex V.C Project Schedule 11_12_09.pdf.





1,100 550 0 1,100 Feet Annex 3.3-1

No.	Name	Туре	Connected load [BTU/hr]
1	R.D.J. Catalog, Inc.	County building	40,982
2	McKean County Court	County building	1,881,764
3	McKean County Jail	County building	1,243,125
4	S.A. School District	County building	5,266,206
5	911	County building	61,473
6	CYS	County building	81,964
7	AJTFP, LP	County building	47,813
8	Bowman Health Center	County building	160,513
9	Penn State Extension	County building	177,589
10	Planning	County building	126,362
11	Old Sena-Kean Manor	Major customer	1,830,536
12	St. Luke's Church	Major customer	1,499,264
13	United Methodist Church	Major customer	1,034,799
14	Lakeview Care Center	Major customer	751,339
15	Intermediate Unit Nine	Major customer	693,281
16	St. Elizabeth's Church	Major customer	662,545
17	Troy M. Herzog	Major customer	638,638
18	Historical Society	Major customer	614,732
19	Christian Church	Major customer	624,978
20	Housing Dickinson Man	Major customer	525,938
21	Pot_01 Pot 02	Summarized consumer	850,380
22		Summarized consumer	788,906
23	Pot_03	Summarized consumer	918,683
24	Pot_04	Summarized consumer	853,795
25	Pot_05	Summarized consumer	1,103,103
26	Pot_06	Summarized consumer	932,344
27	Pot_07	Summarized consumer	1,711,005
28	Pot_08	Summarized consumer	853,795
29	Pot_09	Summarized consumer	1,338,750
30	Pot_10	Summarized consumer	539,598
31	Pot_11 Pot_12	Summarized consumer	1,226,049
33	Pot_13	Summarized consumer Summarized consumer	488,371 911,853
34	Pot_14	Summarized consumer	1,000,647
35	Pot_15	Summarized consumer	1,922,746
36	Pot_16	Summarized consumer	761,585
37	Pot_17	Summarized consumer	1,270,447
38	Pot_18	Summarized consumer	2,025,201
	Pot_19	Summarized consumer	689,866
40	Pot 20	Summarized consumer	669,375
41	Pot_21	Summarized consumer	3,312,724
42	Pot_22	Summarized consumer	928.929
43	Pot 23	Summarized consumer	1.277.277
44	Pot 24	Summarized consumer	3.497.143
45	Pot_25	Summarized consumer	1,133,839
46	Pot 26	Summarized consumer	560,089
47	Pot_27	Summarized consumer	1,441,206
48	Pot_28	Summarized consumer	689,866
49	Pot_29	Summarized consumer	2.230.112
50	Pot_30	Summarized consumer	1,000,647
51	Pot_31	Summarized consumer	1,642,701
52	Pot_32	Summarized consumer	587,411
53	Pot_33	Summarized consumer	788,906
54	Pot_34	Summarized consumer	276,630
55	Pot_35	Summarized consumer	887,947
56	Pot_36	Summarized consumer	638,638
57	Pot_37	Summarized consumer	1,024,554
58	Pot_38	Summarized consumer	966,496
59	Pot_39	Summarized consumer	184,420
60	Pot_40	Summarized consumer	368,839
61	Pot_41	Summarized consumer	92,210
62	Pot_42	Summarized consumer	396,161
	Total		62,747,084

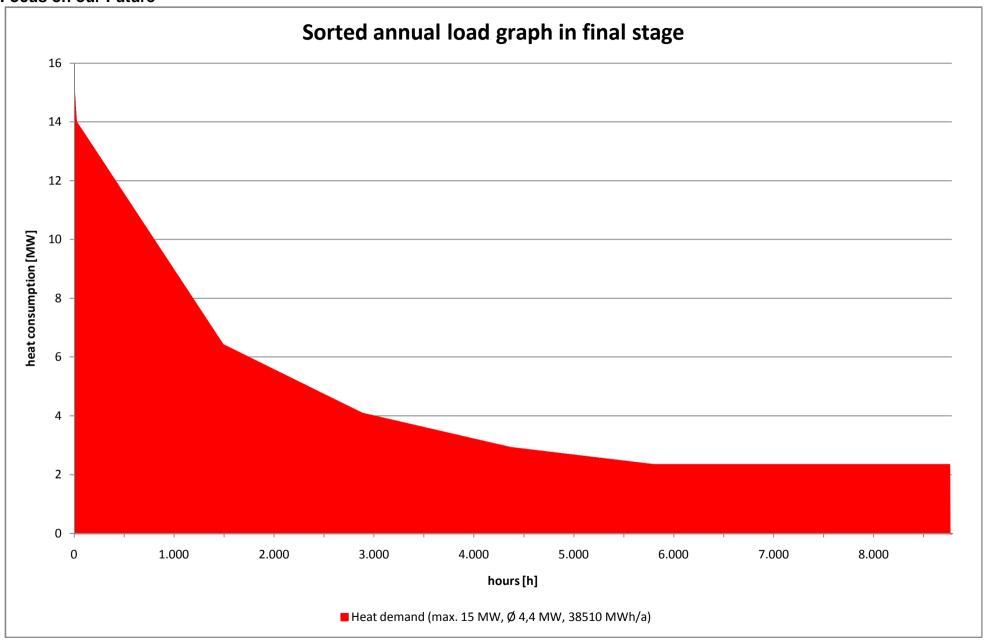
No.	Name	Connected load [BTU/hr]	Costs for Compact-station [\$]
1	R.D.J. Catalog, Inc.	40,982	3,000
2	McKean County Court	1,881,764	25,886
3	McKean County Jail	1,243,125	22,040
4	S.A. School District	5,266,206	46,130
5	911	61,473	3,000
6	CYS	81,964	5,285
7	AJTFP, LP	47,813	3,000
8	Bowman Health Center	160,513	9,872
9	Penn State Extension	177,589	10,570
10	Planning	126,362	7,878
11	Old Sena-Kean Manor	1,830,536	25,752
12	St. Luke's Church	1,499,264	23,910
13	United Methodist Church	1,034,799	20,519
14	Lakeview Care Center	751,339	18,449
15	Intermediate Unit Nine	693,281	18,025
16	St. Elizabeth's Church	662,545	17,649
17	Troy M. Herzog	638,638	17,300
18	Historical Society	614,732	16,951
19	Christian Church	624,978	17,101
20	Housing Dickinson Man	525,938	15,655
	miscellaneous	< 68,300	1,551,000
	miscellaneous	68,300 – 170,760	1,032,102
	miscellaneous	> 170,760	483,106
	Total	62,747,084	3,394,180

Annotation to Annex 3.3-4a and 3.3-4b

1. The different pipe colors describe the specific pressure loss in mbar/km.

1 mbar/km = 571 PSI/in

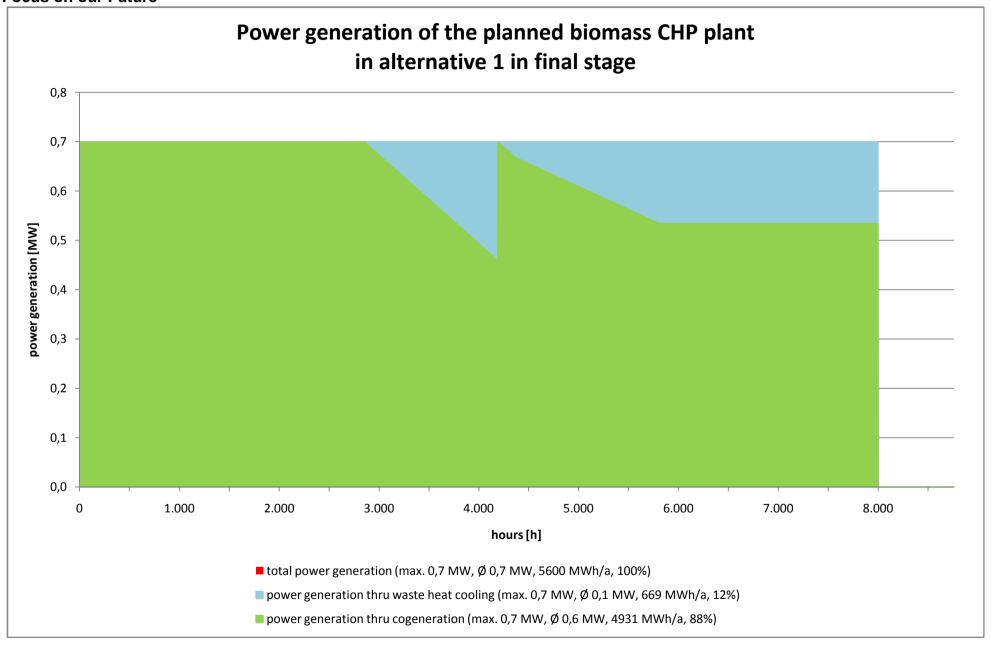
2. The different line widths describe the inner diameter in mm.

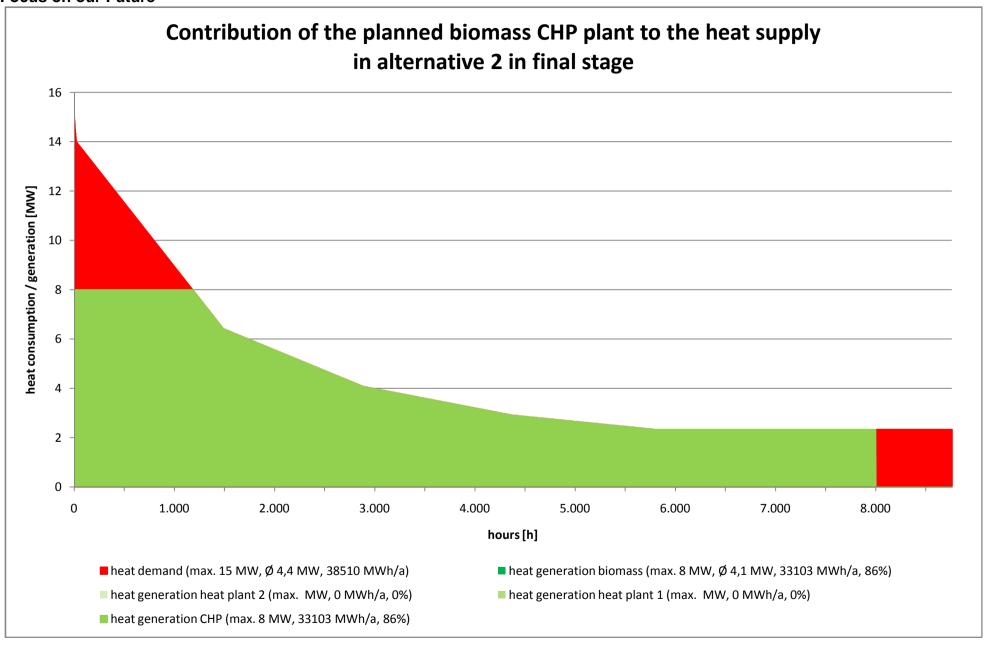

1 mm = 0.039 in

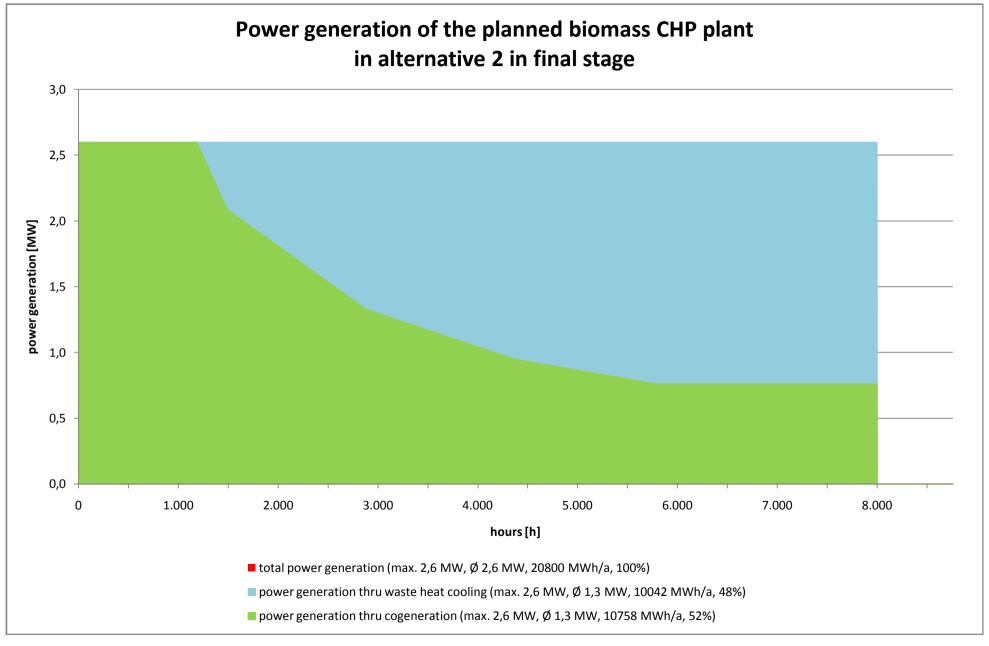
- 3. The red circle shows the location of the customer with the minimum differential pressure of 14.5 PSI.
- 4. Node HAWCCB118 (supply) and RHAWCCB118 (return) comprehend the outgoing pressure, the return pressure [bar] and mass flow [t/h].

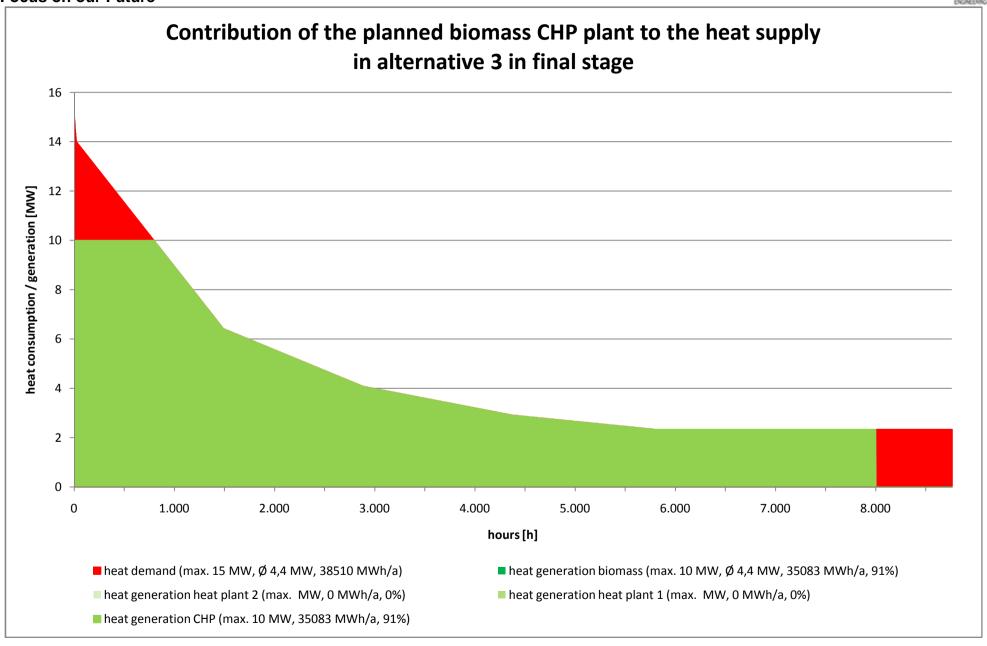
1 bar = 14.5 PSI 1 t/h = 264 gal/hr

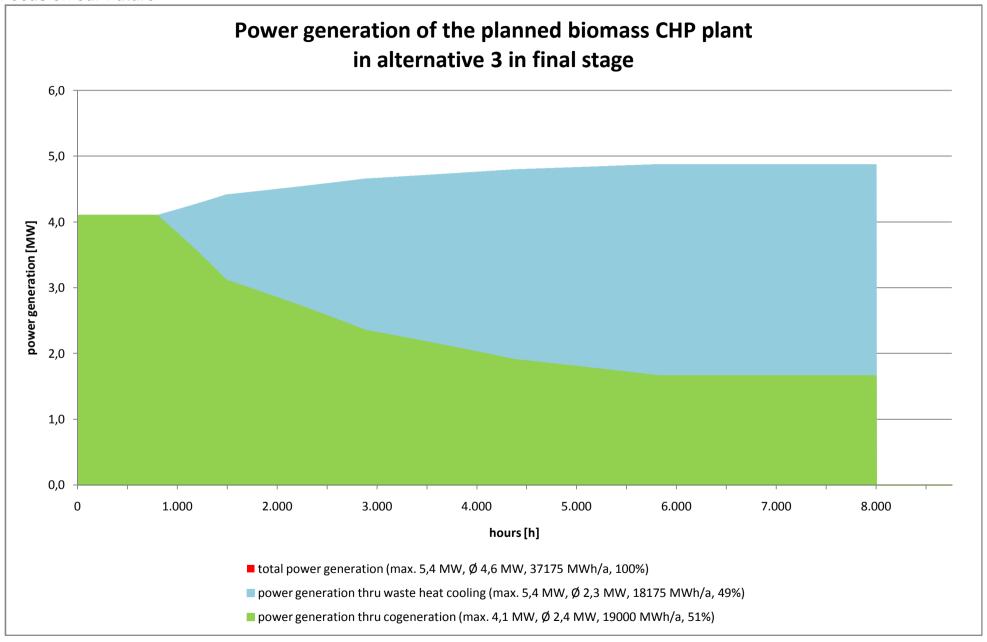
Annex IV.A.3-A Basic Information

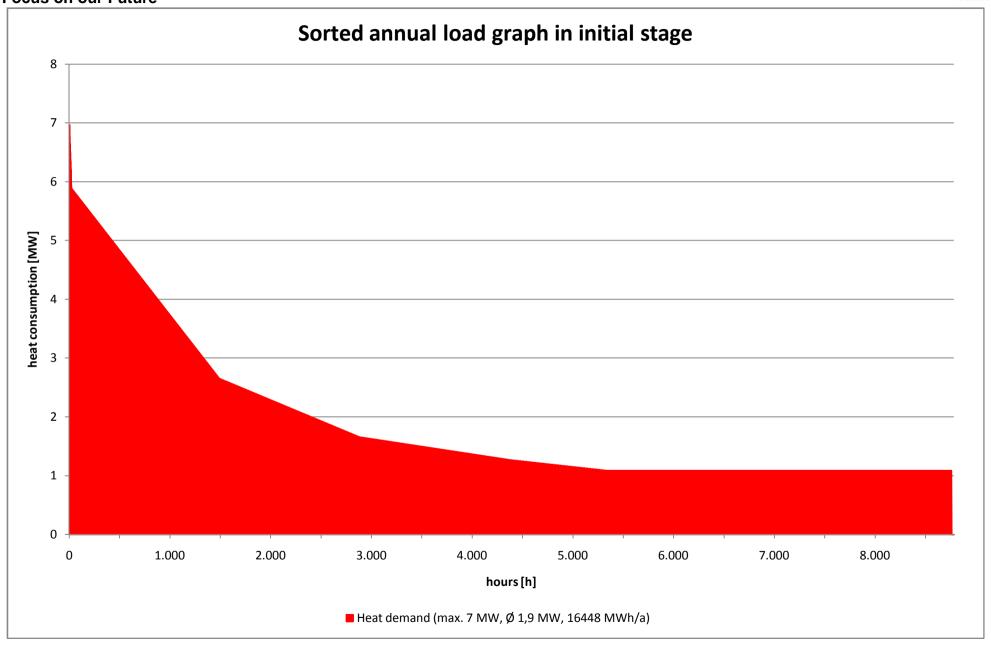


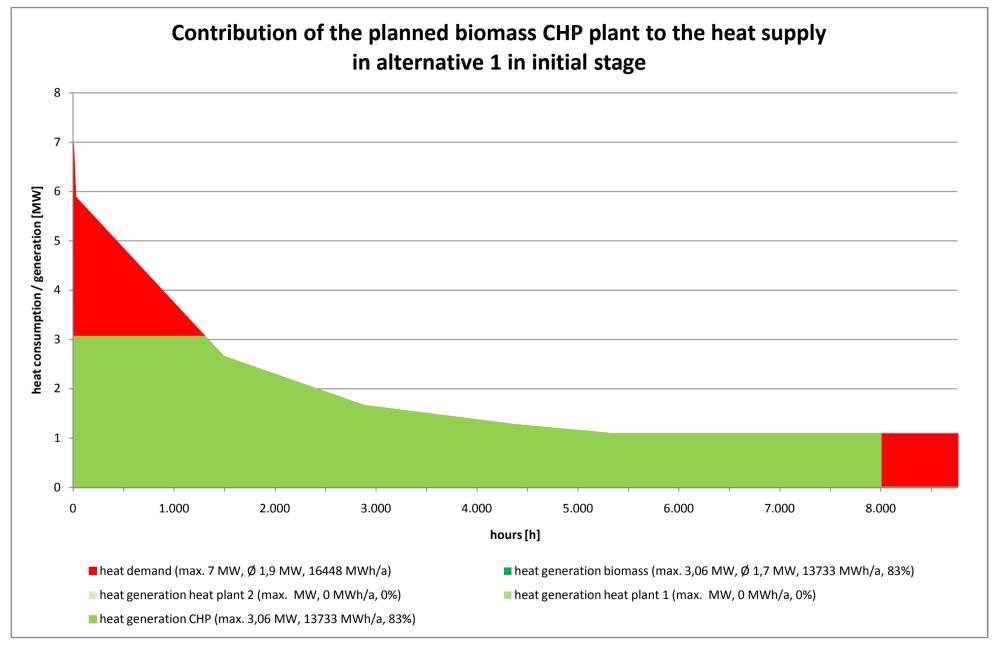


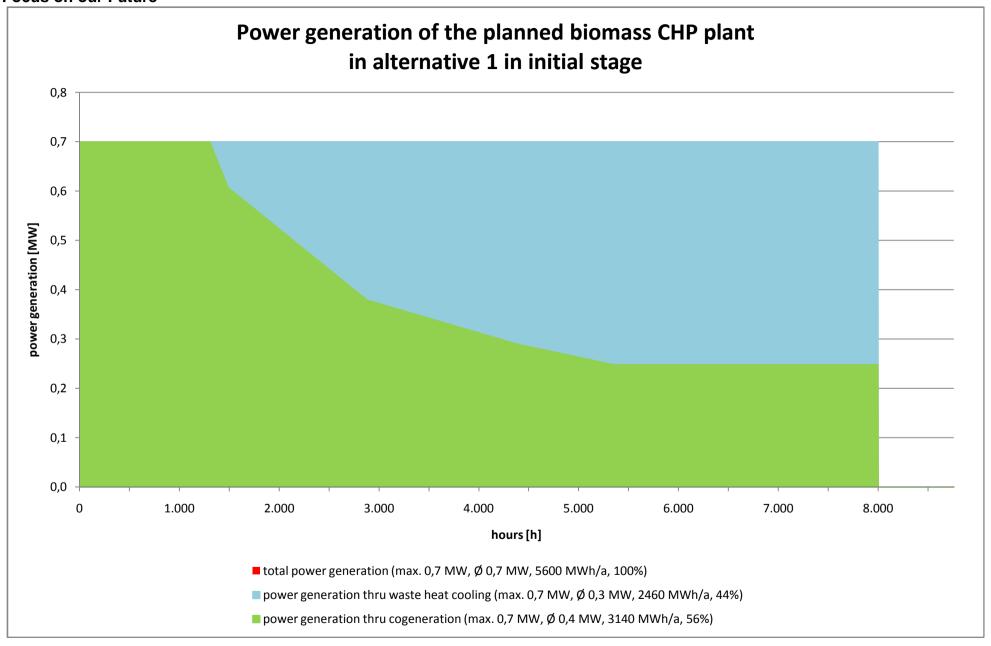


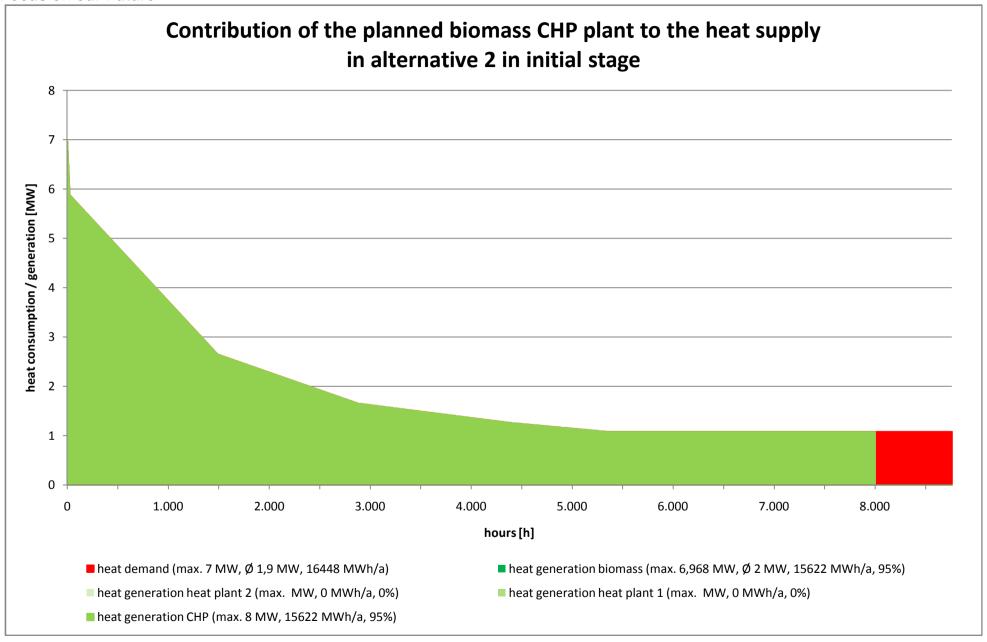


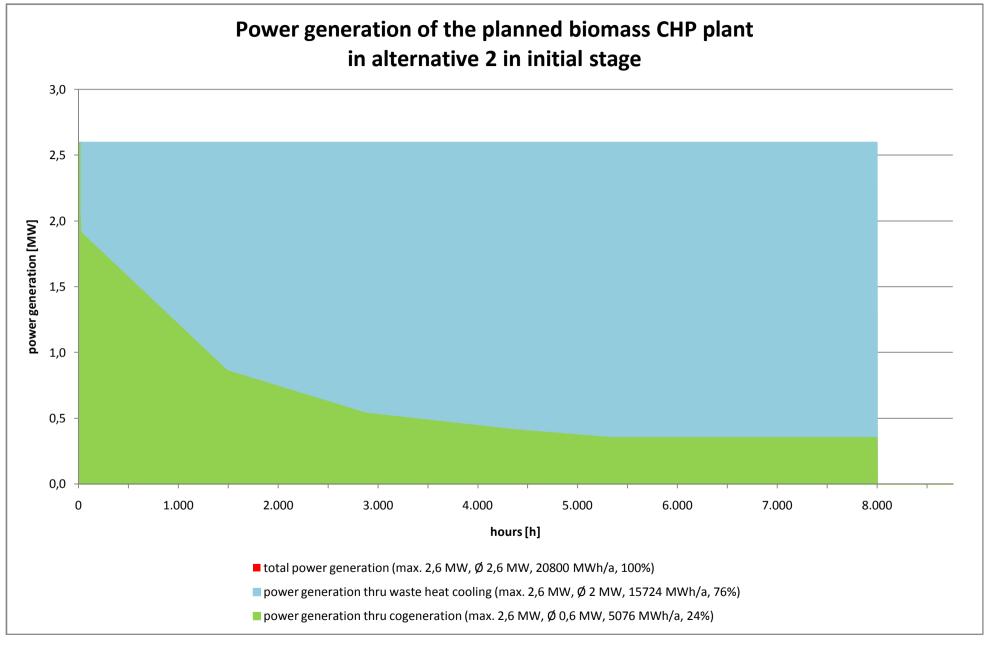


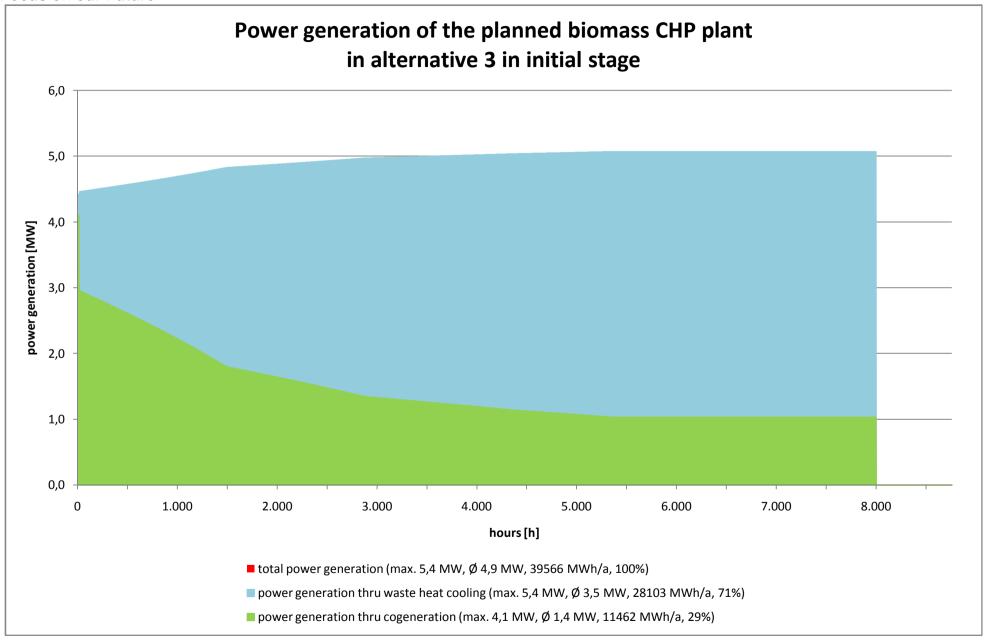


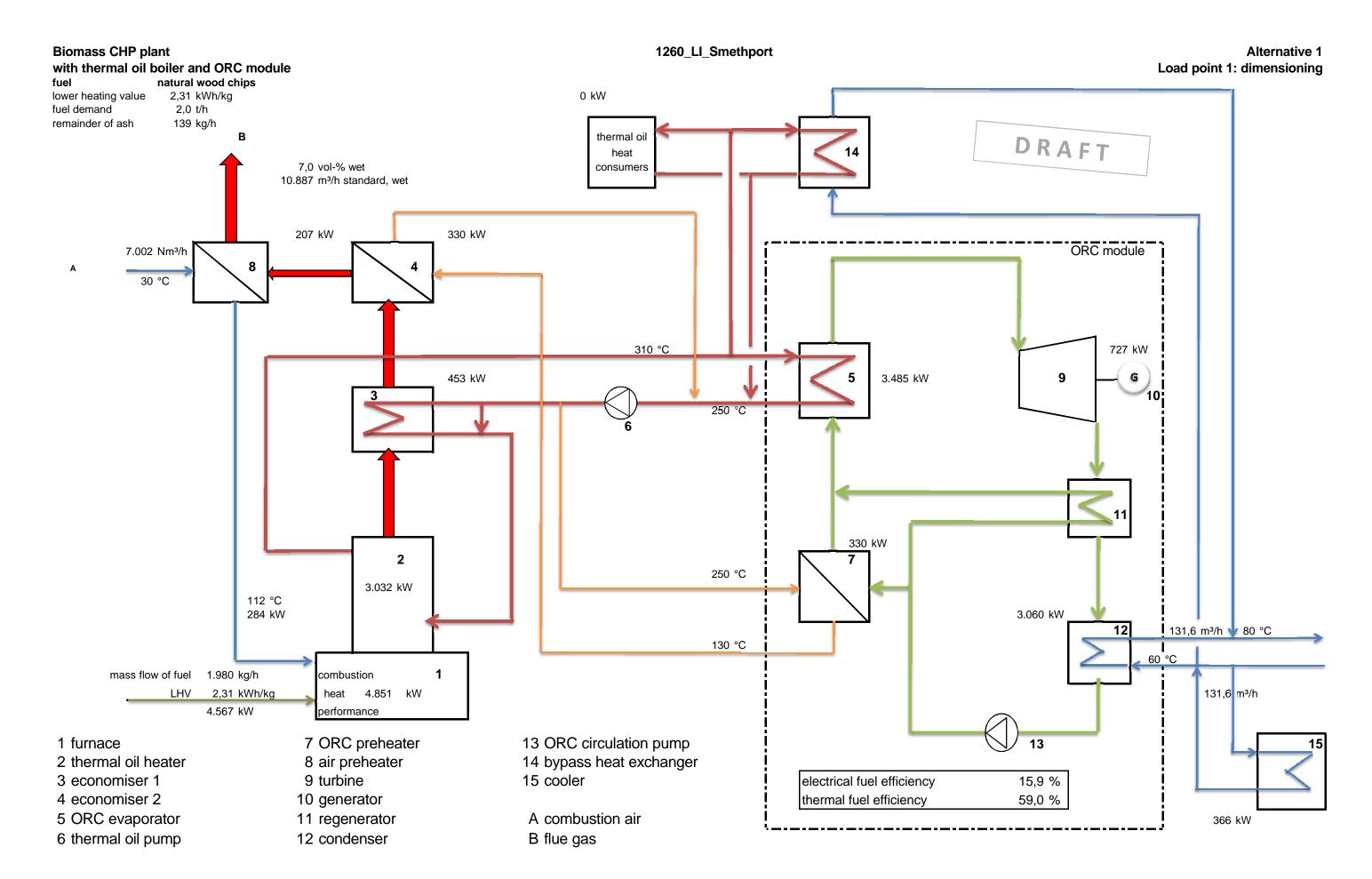


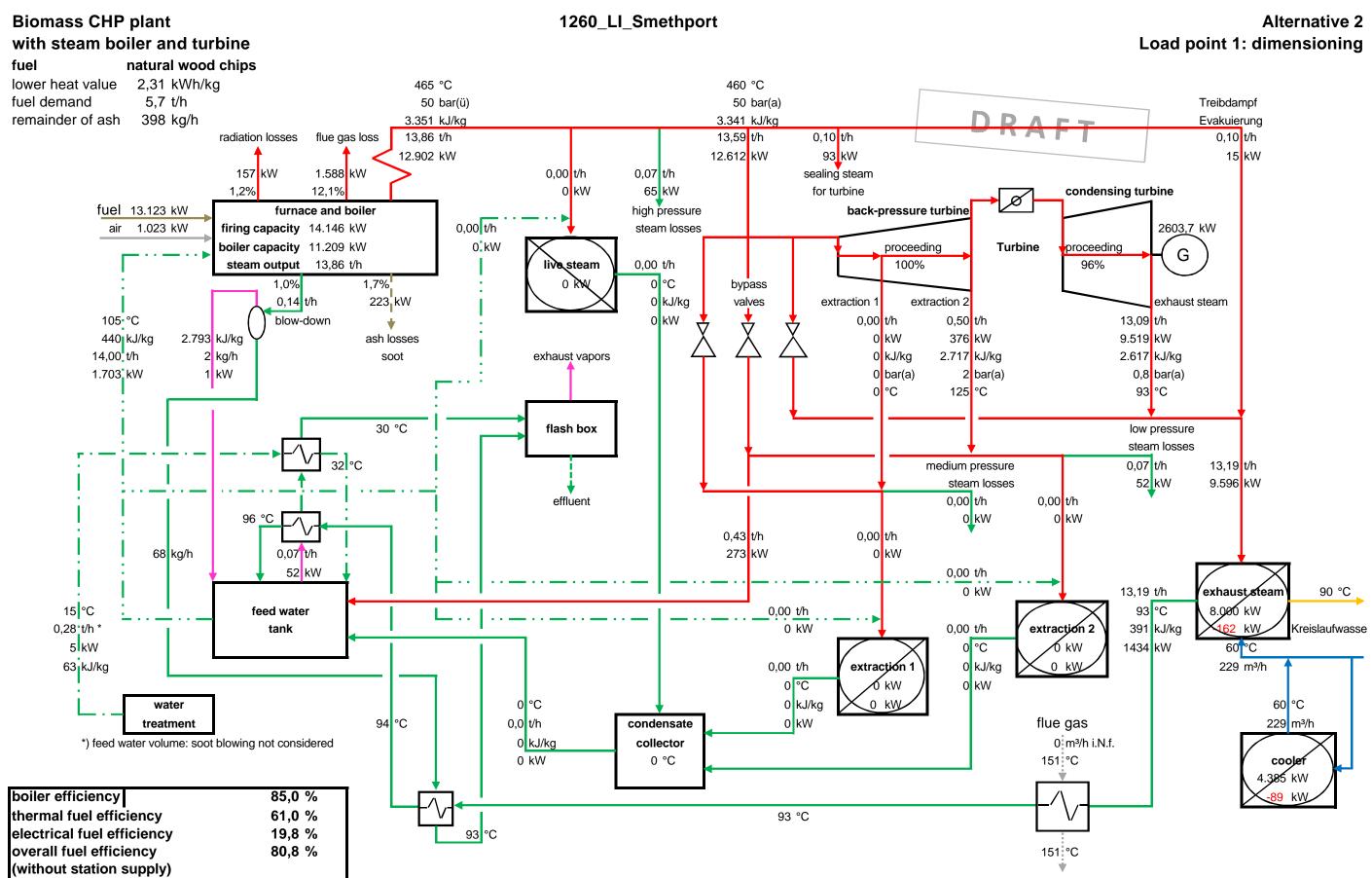




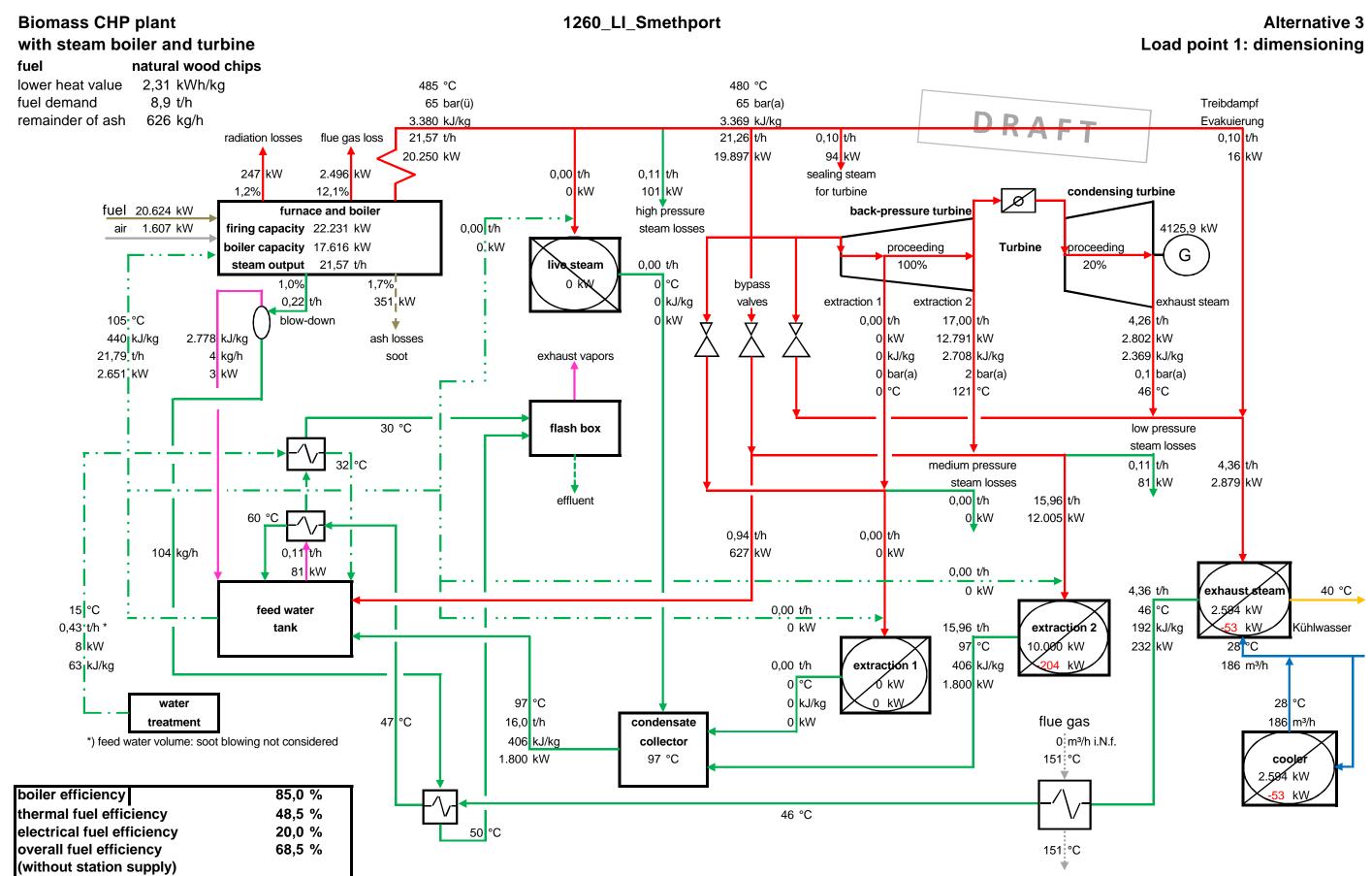


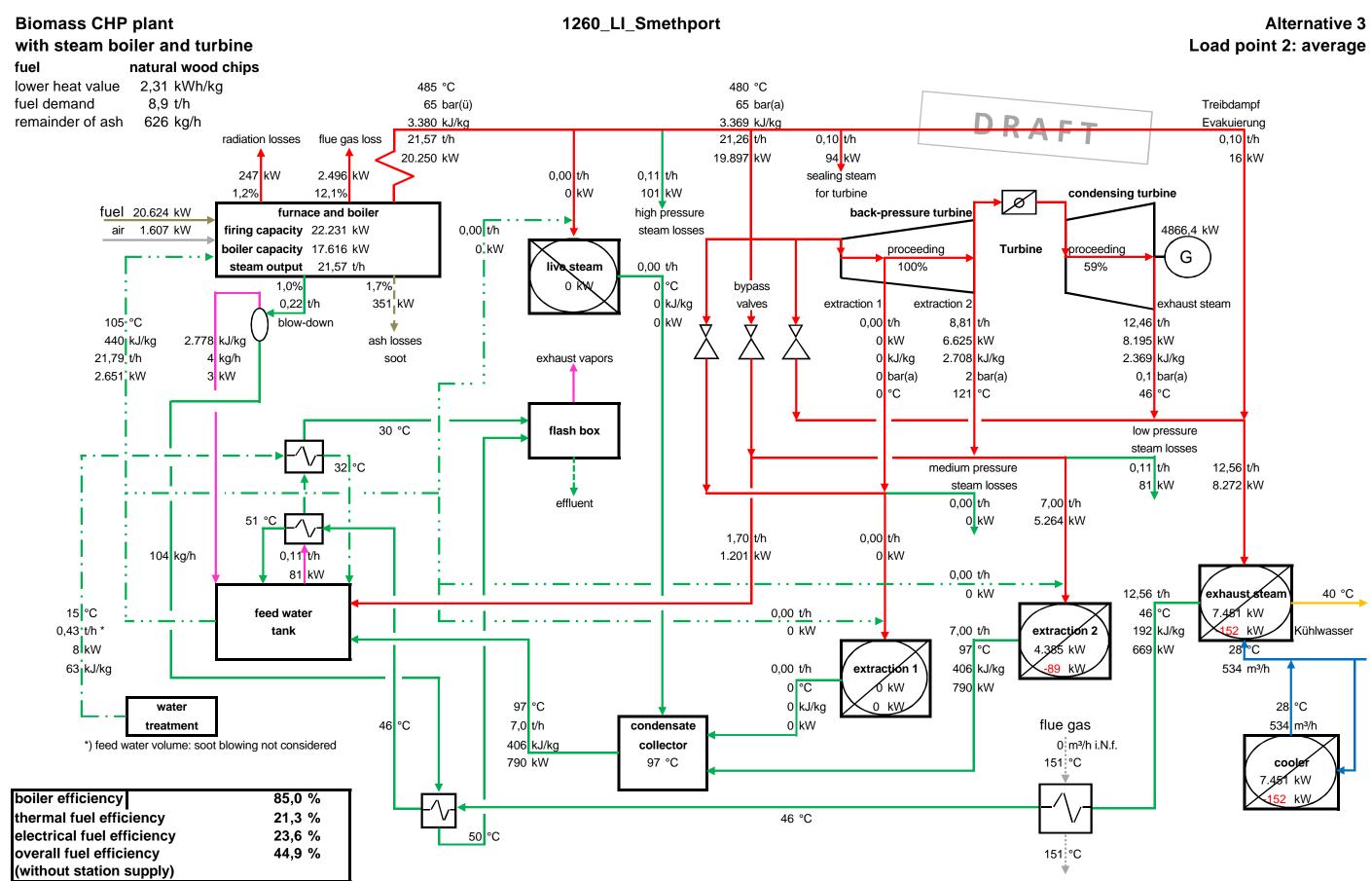


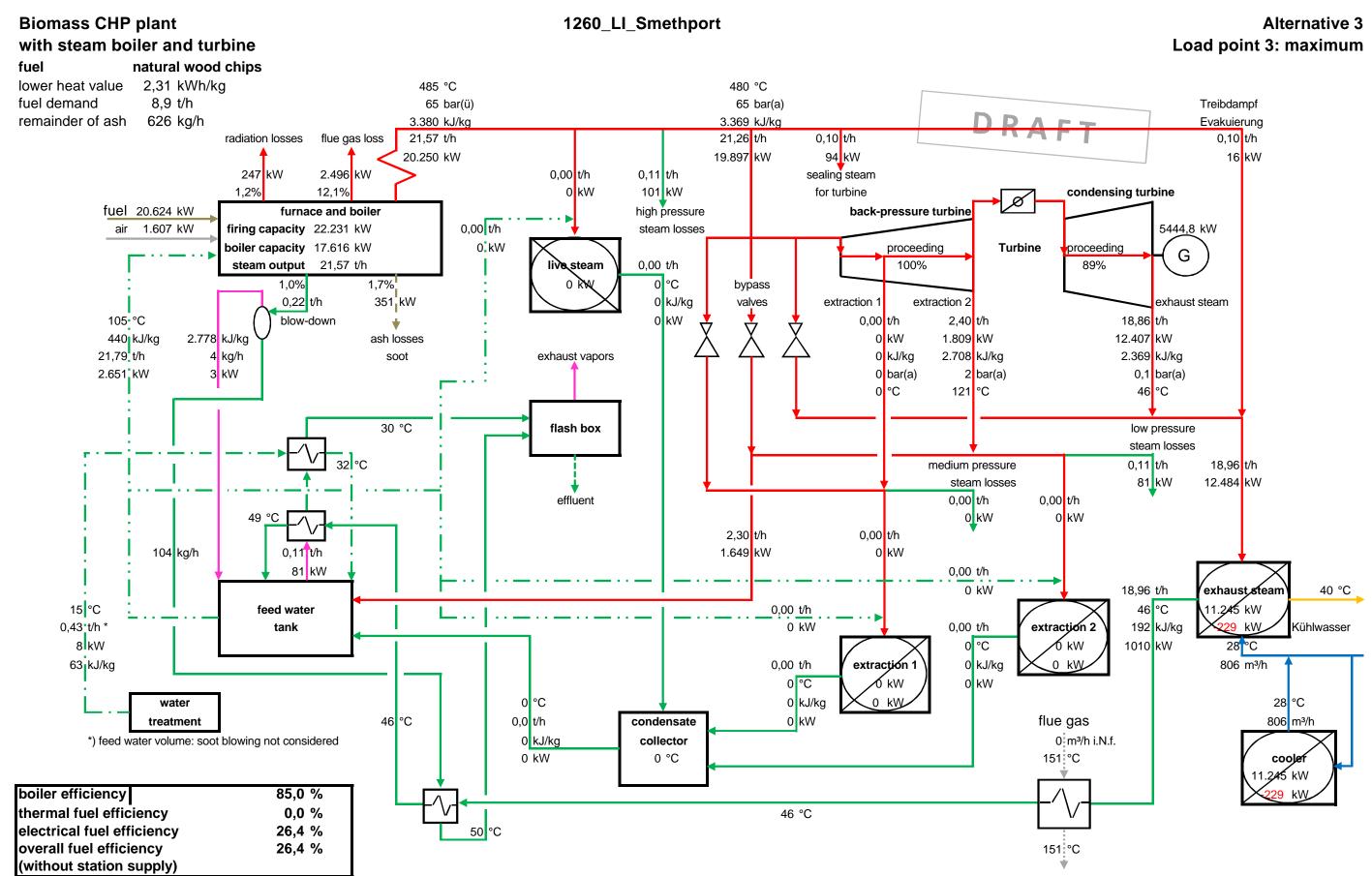


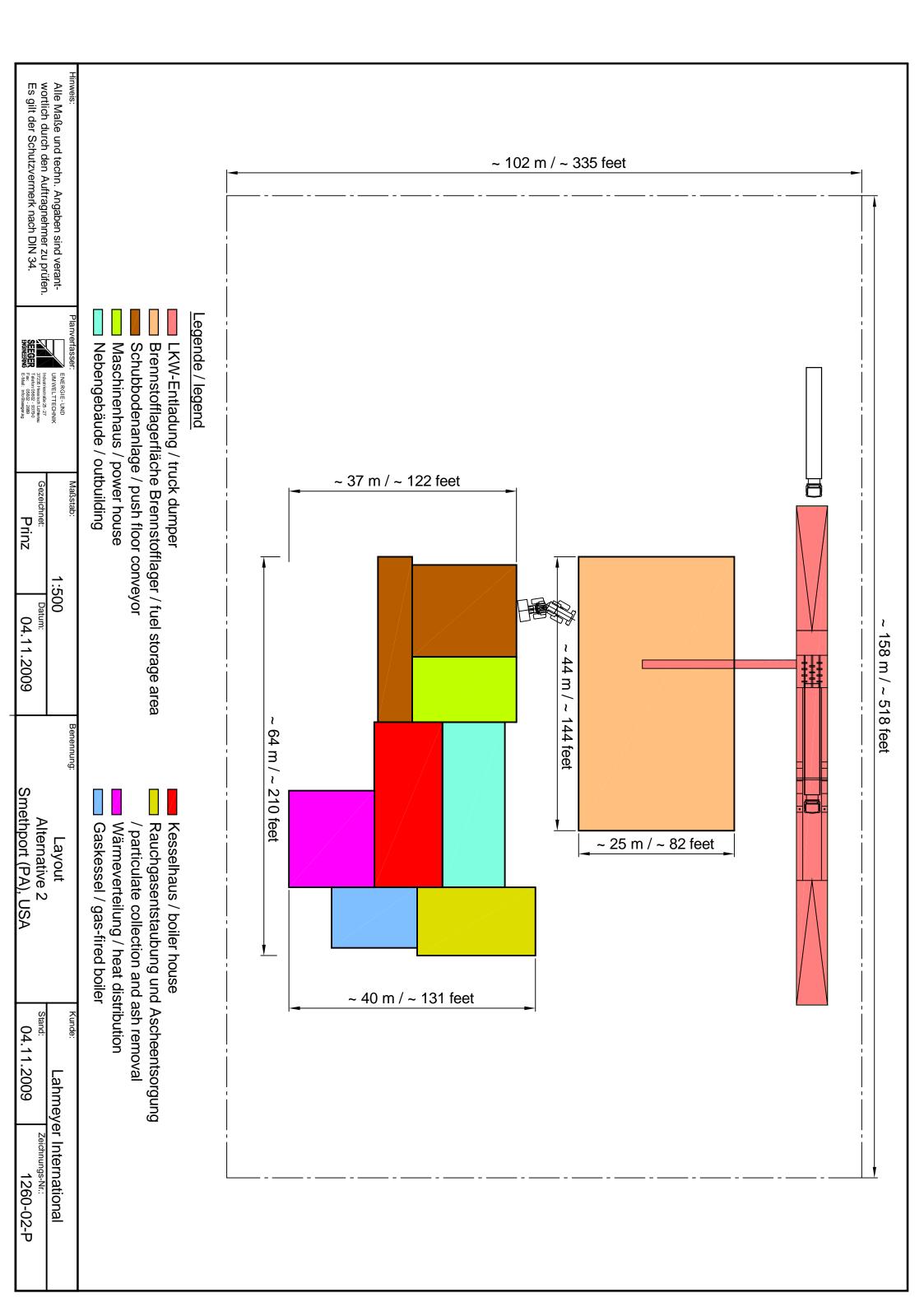


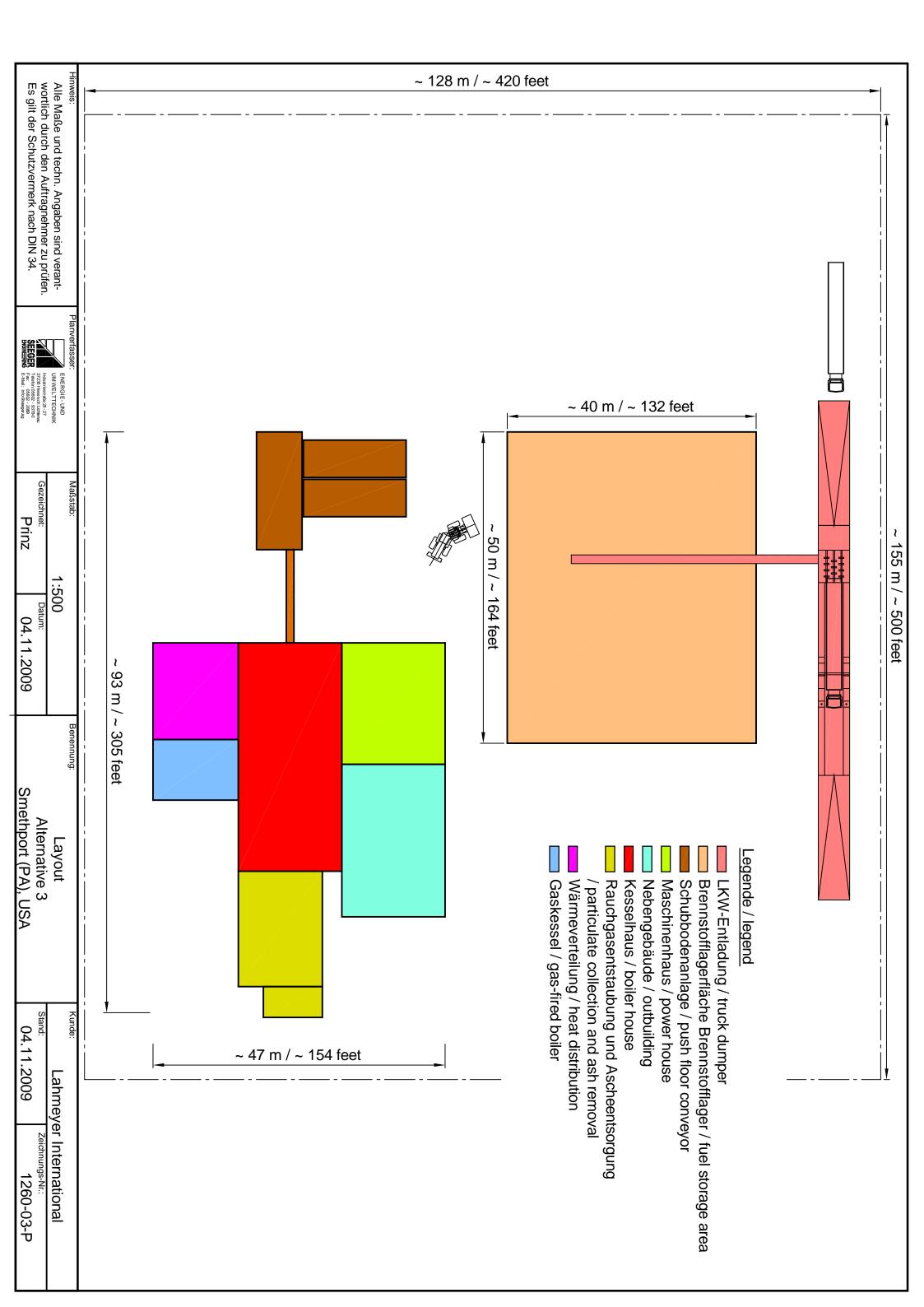
Annex IV.A.3-B


Technical Data




Flow sheet water-steam process




Flow sheet water-steam process

Alle Maße und techn. Angaben sind verantwortlich durch den Auftragnehmer zu prüfen. Es gilt der Schutzvermerk nach DIN 34. ~ 70 m / ~ 230 feet ~ 40 m / ~ 131 feet 51 m/~ ENERGIE- UND
UM WELTTECHNIK
Industriestraße 25-27
3725 Hessisch Licherau
Teilon 05602 - 9379-0
Fax: 05602 - 2889
E-Mail: info@seeger.ag 167 feet Prinz 1:500 ~ 158 m / ~ 518 feet 04.11.2009 20 m / ~ 66 feet Smethport (PA), USA Legende / legend \sim 35 m / \sim 115 feet LKW-Entladung / truck_dumper Alternative 1 Brennstofflagerfläche Brennstofflager / fuel storage area Schubbodenanlage / push floor conveyor Gaskessel / gas-fired boiler MS-Anlage+Trafo / medium voltage facilities + transformer ORC-Anlage / ORC-Module Wärmeverteilung / heat distribution Rauchgasentstaubung und Ascheentsorgung Nebengebäude / outbuilding Layout Kesselhaus / boiler house / particulate collection and ash removal 04.11.2009 Lahmeyer International 1260-01-P

Annex IV.A.3-C

Financial Data

biomass combined heat and power plant profitability assessment

project: 1260_LI_Smethport investment and financing plan

27. November 2009 status quo:

alternative 1: thermal oil boiler with ORC module load point 1: dimensioning

project manag Carsten Besser telephone exte - 34 e-mail: cbe@seeger.ag

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seeger.ag

1.	investment cost estimate biomass heat a	nd power pl
	HKW (Thermoölkessel mit ORC-Prozess)	4,9 MW FWI
1.1	technology	€ne
a)	separator for impurities (overlengths, ferrous $\boldsymbol{m}_{\boldsymbol{\theta}}$	(
b)	fuel storage and transport	300.000
c)	furnace and boiler	2.300.000

b)	fuel storage and transport	300.000
c)	furnace and boiler	2.300.000
d)	flue gas cleaning (electrostatic precipitator)	250.000
e)	emission measurement	100.000

Ο,	omiodion mododromont	100.000
f)	flue gas discharge	50.000
g)	water treatment	0
h)	power generation	1.430.000

i)	vacuum condenser	0
j)	heat exchanger / cooler	250.000
k)	piping and heat distribution	400.000
I)	switchgear, transformer, cabeling	200.000

m) pr	ocess control enginnering	150.000
n) co	ompressed air generation	35.000
o) cr	ane (turbine house)	30.000
p) fir	e extinguishing installation	50.000

250.000

q)	building services	150.000
r)	wheel loader	160.000
s)	biomass hot water boiler	900.000

u) truck	weigh station	35.000
v) emer	gency power supply	40.000
w) heat	grid	0

x)	transfer station	0
y)	truck dumper	700.000
٦)		0

total technology	7.780.000

unconsidered options

t) gas-fired peak load boiler

unconsidered options	
separator for impurities (overlengths, ferrous mo	200.000
silo for ashes	200.000
SNCR nitrogen oxide reduction facility	175.000
* all information based on current estimated prices	

	total real estate	0
b)	development costs	0
a)	real estate costs	0
1.2	real estate	€net

1.3	construction	€net
a)	buildings	1.500.000
b)	outside facilities	300.000
c)	civil engineering	100.000
	total construction	1,900,000

1.4	engineering services	€net
a)	architect and engineering services	580.000
b)	permission and surveys	0
c)	additional construction costs	0
d)	start-up costs of project	0
	total engineering services	580.000

	€net
	10.260.000
2,5%	256.500
	10.516.500
	2,5%

2. financing plan

2.1	subsidies	€net
a)	overall investment	10.516.500
b)	eligible investment volume	7.333.333
c)	quota of eligible investment	50,0%
	total subsidies	3.666.667

2.2	additional charges	€net
a)	financing costs (0,5%)	24.934
b)	interest during investment period (5,0%)	249.344
c)	miscellaneous	
	total additional charges	274.278

2.3	financing		€net				
a)	investment volume to be	e financed	7.124.112				
b)	equity capital	30%	2.137.233				
c)	loan capital	70%	4.986.878				
	overall investment min	7.124.112					

	€net
overall investment incl. additional charges	10.790.778
subsidies	3.666.667
total amount to be financed	7.124.112
equity capital	2.137.233
loan capital	4.986.878

amortization schedule (T€)
status quo: 27. November 2009

alternative 1: thermal oil boiler with ORC module

load point 1: dimensioning

project manager: Carsten Besser telephone extensior - 34

e-mail: <u>cbe@seeger.ag</u>

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seeger.ag

I. time schedule		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
1. quarter	status quo of investment	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2. quarter	status quo of investment	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
3. quarter	status quo of investment	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
4. quarter	status quo of investment	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
investments pe	er year	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
status quo of i	nvestment at end of year	0%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

II. amortization calculation

loan capital	4.987	T€
interest	6,00%	
payout	100%	
life of loan	15	years
number of installme	4	times/year
annuity	127	T€/quarter
	10,30	%

		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
1. quarter	status quo of loan	0	0	4.829	4.607	4.372	4.122	3.857	3.576	3.277	2.960	2.624	2.267	1.888	1.486	1.059	606	125
i. quaitei	•	0	0															123
	interest	0	Ū	72	69	66	62	58	54	49	44	39	34	28	22	16	9	2
	amortization	0	0	54	58	61	65	69	73	77	82	87	93	98	104	111	118	125
	annuity_	0	0	127	127	127	127	127	127	127	127	127	127	127	127	127	127	127
2. quarter	status quo of loan	0	4.987	4.775	4.550	4.311	4.057	3.788	3.503	3.200	2.878	2.537	2.174	1.789	1.381	948	488	0
	interest	0	75	72	68	65	61	57	53	48	43	38	33	27	21	14	7	0
	amortization	0	52	55	58	62	66	70	74	79	83	89	94	100	106	112	119	0
	annuity	0	127	127	127	127	127	127	127	127	127	127	127	127	127	127	127	0
3. quarter	status quo of loan	0	4.935	4.720	4.491	4.249	3.992	3.719	3.429	3.121	2.795	2.448	2.080	1.690	1.275	836	369	0
	interest	0	74	71	67	64	60	56	51	47	42	37	31	25	19	13	6	0
	amortization	0	53	56	59	63	67	71	75	80	85	90	95	101	108	114	121	0
	annuity	0	127	127	127	127	127	127	127	127	127	127	127	127	127	127	127	0
4. quarter	status quo of loan	0	4.882	4.664	4.432	4.186	3.925	3.648	3.353	3.041	2.710	2.358	1.985	1.588	1.168	721	248	0
	interest	0	73	70	66	63	59	55	50	46	41	35	30	24	18	11	4	0
	amortization	0	53	57	60	64	68	72	76	81	86	91	97	103	109	116	123	0
	annuity	0	127	127	127	127	127	127	127	127	127	127	127	127	127	127	127	0
status quo of loan at end of year		0	4.829	4.607	4.372	4.122	3.857	3.576	3.277	2.960	2.624	2.267	1.888	1.486	1.059	606	125	0
	interest per year	0	222	285	271	257	241	225	208	190	170	149	128	104	80	53	26	2
	amortization per year	0	158	222	235	250	265	281	299	317	336	357	379	402	427	453	481	125
	annuity per year	0	380	507	507	507	507	507	507	507	507	507	507	507	507	507	507	127

profitability assessment

project: 1260_LI_Smethport depreciation and interest rate (T€)

status quo: 27. November 2009

alternative 1: thermal oil boiler with ORC module

load point 1: dimensioning

project manager: Carsten Bessertelephone extension - 34

e-mail: cbe@seeger.ag

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seeger.ag

I. interest on partner's loan (equity capital)

1. composition of loan (equity capital)	absolut	in percent
a.) partner A	2.137 T€	100,0 %
b.) partner B	0 T€	0,0 %
c.) partner C	0 T€	0,0 %
loan	2.137 T€	100,0 %

interest rate 10,00 % life of loan 15 Jahre

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
2. interest on partner's loan [€a]	0	160	214	214	214	214	214	214	214	214	214	214	214	214	214	214	53

II depreciation

1. depreciation parameters

a.) depreciation type linear
b.) recovery period 15 years
c.) depreciable amount 10.791 T€

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
2. annual depreciation [€a]	0	540	719	719	719	719	719	719	719	719	719	719	719	719	719	719	180

profitability assessment

project: 1260_LI_Smethport revenues (T€)

status 27. November 2009

alternative 1: thermal oil boiler with ORC module load point 1: dimensioning

begin of operation 01.07.2011

project manager Carsten Besser
telephone exten: - 34

e-mail: <u>cbe@seeger.ag</u>

SEEGER ENGINEERING AG
Industriestr. 25-27
37235 Hessisch Lichtenau
Tel: 0 56 02 / 93 79 -0
Fax: 0 56 02 / 28 89
info@seeger.ag

total revenues	T ∉ a		1.851		0	1.388	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	4
revenues from sale of gree	r T€/a		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
price per certificate	€/piece	0		0,0%	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0
certificates per year	pieces	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4. sale of green certificates																					
revenues from fuel saving	T€/a		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
fuel price	€/I			0,0%	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
annual fuel saving	TI/a	3.943			0	2.957	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	
3. fuel saving (fuel oil etc.)																					
revenues from heat sale	T€/a		1.347		0	1.010	1.347	1.347	1.347	1.347	1.347	1.347	1.347	1.347	1.347	1.347	1.347	1.347	1.347	1.347	
heat price	€/MWh	41,15		0,0%	0,00	41,15	41,15	41,15	41,15	41,15	41,15	41,15	41,15	41,15	41,15	41,15	41,15	41,15	41,15	41,15	4
annual heat supply	MWh/a	32.725			0	24.544	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	8
average capacity	MW	3,74		0,0%	0,00	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	
2. heat sale																					
revenues from power feed	·i T€/a		504		0	378	504	504	504	504	504	504	504	504	504	504	504	504	504	504	
power feed-in tariff	€/MWh	86,67		0,0%	0,00	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	8
annual power generation	MWh/a	5.816			0	4.362	5.816	5.816	5.816	5.816	5.816	5.816	5.816	5.816	5.816	5.816	5.816	5.816	5.816	5.816	1
average capacity	MW	0,727			0,000	0,727	0,727	0,727	0,727	0,727	0,727	0,727	0,727	0,727	0,727	0,727	0,727	0,727	0,727	0,727	C
1. power feed-in																					
revenues				inflation																	
				price																	
redundancy boiler	h/a	760			0	570	760	760	760	760	760	760	760	760	760	760	760	760	760	760	
heat generation	h/a	8.760			0	6.570	8.760	8.760	8.760	8.760	8.760	8.760	8.760	8.760	8.760	8.760	8.760	8.760	8.760	8.760	
power generation	h/a	8.000			0	6.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	
operating hours biomass CHP plant	h/a	8.000			0	6.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	2
general conditions				workload	0%	75%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	

profitability assessment

project: 1260_LI_Smethport

operating costs (T€)

alternative 1: thermal oil boiler with ORC module

load point 1: dimensioning

project manager Carsten Besser
telephone extens - 34

e-mail: cbe@seeger.ag

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seege.ag

tatus 27. November 2009					begin of o		01.07.	2011							000 @ 3000			info@se	ege.ag	<u>EN</u>	NGINEE
					2040	2011	2042	2042	204.4	2045	2040	2047	2040	2040	2020	2024	2022	2022	2024	2025	2
general conditions				workload	2010 0%	2011 75%	2012 100%	2013 100%	2014 100%	2015 100%	2016 100%	2017 100%	2018 100%	2019 100%	2020 100%	2021 100%	2022 100%	2023 100%	2024 100%	2025 100%	2
design data				Workload	0,70	. 0 70	10070	10070	10070	10070	10070	10070	10070	10070	10070	10070	10070	10070	10070	10070	
operating hours CHP	h/a	8.000			0	6.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	2
average fuel power input	MW	6,2		0,0%	0,0	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	
annual fuel energy	MWh/a	49.600		5,515		37.200	49.600	49.600	49.600	49.600	49.600	49.600	49.600	49.600	49.600	49.600	49.600	49.600	49.600	49.600	12
redundancy boiler	h/a	760			0	570	760	760	760	760	760	760	760	760	760	760	760	760	760	760	
usage-bound costs				price inflation																	
1. fuel supply																					
average calorific value of fuel	MWh/t	2,3																			
required amount of fuel	t/a	21.565			0	16.174	21.565	21.565	21.565	21.565	21.565	21.565	21.565	21.565	21.565	21.565	21.565	21.565	21.565	21.565	:
specific fuel costs	€/t	23,33		0,0%	0,00	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	
costs of fuel supply	T€/a		503		0	377	503	503	503	503	503	503	503	503	503	503	503	503	503	503	
2. power supply																					
average capacity	kW	150			0	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	
annual power requirement	MWh/a	1.200			0	900	1.200	1.200	1.200	1.200	1.200	1.200	1.200	1.200	1.200	1.200	1.200	1.200	1.200	1.200	
specific electricity costs	€ /MWh	53,33		0,0%	0,00	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	
costs of power supply	T€/a		64		0	48	64	64	64	64	64	64	64	64	64	64	64	64	64	64	
3. ash disposal																					
annual amount of ash	t/a	1.078			0	809	1.078	1.078	1.078	1.078	1.078	1.078	1.078	1.078	1.078	1.078	1.078	1.078	1.078	1.078	
specific costs of ash disposal	€/t	13,33		0,0%	0,00	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	
costs of ash disposal	T€/a		14		0	11	14	14	14	14	14	14	14	14	14	14	14	14	14	14	
4. water treatment																					
water amount treated per hour	m ³ /h	0,0			0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
specific costs of water treatment	€/m³	0,00		0,0%	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
costs of water treatment	T€/a		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5. peak load / redundancy covering																					
annual heat capacity of fuel	MWh/a	6.400			0	4.800	6.400	6.400	6.400	6.400	6.400	6.400	6.400	6.400	6.400	6.400	6.400	6.400	6.400	6.400	
specific costs of heat capacity	€ /MWh	26,67		0,0%	0,00	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	
costs of peak load / redundancy coveri	T€/a		171		0	128	171	171	171	171	171	171	171	171	171	171	171	171	171	171	
6. operating supplies	T€/a	25	25	0,0%	0	19	25	25	25	25	25	25	25	25	25	25	25	25	25	25	
subtotal operating costs	T€/a		777		0	583	777	777	777	777	777	777	777	777	777	777	777	777	777	777	

27. November 2009

profitability assessment project: 1260_LI_Smethport

operating costs (T€)

status

alternative 1: thermal oil boiler with ORC module

begin of operation 01.07.2011

load point 1: dimensioning e-mail:

project manager Carsten Besser
telephone exten: - 34

cbe@seeger.ag

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seege.ag

VII total operating costs	T€/a		1.082		0	812	1.082	1.082	1.082	1.082	1.082	1.082	1.082	1.082	1.082	1.082	1.082	1.082	1.082	1.082	27
VI. subtotal operating costs	T€/a		305		0	229	305	305	305	305	305	305	305	305	305	305	305	305	305	305	7
total miscellaneous costs	T€/a		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
insurance	T€/a	0		0,0%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
management	T€/a			0,0%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3. miscellaneous	To			0.004																	
costs of service and maintenance	T€⁄a		145		0	109	145	145	145	145	145	145	145	145	145	145	145	145	145	145	3
specific costs as % of investment	%	1,5		0,0%	0,0	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,
2. service and maintenance																					
operating costs	T€⁄a		160		0	120	160	160	160	160	160	160	160	160	160	160	160	160	160	160	4
labor costs	T€/a employee	40		0,0%	0	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	4
personnel requirement	employees	4,0			0	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
1. salaries and wages																					
V. operating costs				price inflation																	
redundancy boiler	h/a	760			0	570	760	760	760	760	760	760	760	760	760	760	760	760	760	760	19
annual fuel energy	MWh/a	49.600			0	37.200	49.600	49.600	49.600	49.600	49.600	49.600	49.600	49.600	49.600	49.600	49.600	49.600	49.600	49.600	12.40
average fuel power input	MW	6,2		0,0%	0,0	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6,2	6
operating hours CHP	h/a	8.000			0	6.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	2.00
design data				WUIKIUAU	0 /8	1370	100 /6	100 /6	100 /6	100 /6	100 /6	100 /6	100 /6	100 /6	100 /6	100 /6	100 /6	100 /6	100 /6	100 /6	23
IV. general conditions				workload	0%	75%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	25
					2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	202

biomass combined heat and power plant profitability assessment

project: 1260_LI_Smethport

alternative 1: thermal oil boiler with ORC module load point 1: dimensioning

Carsten Besser project manager: telephone extension - 34

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seeger.ag

project: 1200_Li_ometriport profit and loss account /cash flow forecast (1	г ⊕		ano	illative i	load point	1: dimen	_	vo illouu	16		e-mail:	<u> </u>	:be@seeger.	<u>ag</u>	Fax: 0	89 2	SEEGER	
status quo 27. November 2009	,			begin of o	operation:	01.07.2	2011						_		11110	@seeger.a		NGINEER
		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	20
l. revenues																		
1. revenues from power feed-in	T€/a	0	378	504	504	504	504	504	504	504	504	504	504	504	504	504	504	1
2. revenues from heat sale	T€/a	0	1.010	1.347	1.347	1.347	1.347	1.347	1.347	1.347	1.347	1.347	1.347	1.347	1.347	1.347	1.347	3
3. revenues from fuel saving	T€/a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4. revenues from sale of green certificates	T€/a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
total revenues	T ∉ a	0	1.388	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	4
I. costs																		
1. costs of fuel supply	T€/a	0	377	503	503	503	503	503	503	503	503	503	503	503	503	503	503	
2. costs of power supply	T€/a	0	48	64	64	64	64	64	64	64	64	64	64	64	64	64	64	
3. costs of ash disposal	T€/a	0	11	14	14	14	14	14	14	14	14	14	14	14	14	14	14	
4. costs of water treatment	T€/a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5. costs of peak load / redundancy covering	T€/a	0	128	171	171	171	171	171	171	171	171	171	171	171	171	171	171	
6. costs of operating supplies	T€/a	0	19	25	25	25	25	25	25	25	25	25	25	25	25	25	25	
7. operating costs	T€/a	0	120	160	160	160	160	160	160	160	160	160	160	160	160	160	160	
8. costs of service and maintenance	T€/a	0	109	145	145	145	145	145	145	145	145	145	145	145	145	145	145	
9. costs of management	T€/a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0. insurance costs	T€/a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1. depreciation	T€/a	0	540	719	719	719	719	719	719	719	719	719	719	719	719	719	719	
2. interests on loan capital	T€/a	0	222	285	271	257	241	225	208	190	170	149	128	104	80	53	26	
13. interests on partner's loan	T€/a	0	160	214	214	214	214	214	214	214	214	214	214	214	214	214	214	
overall costs	T ∉ a	0	1.734	2.300	2.287	2.272	2.257	2.241	2.223	2.205	2.186	2.165	2.143	2.120	2.095	2.069	2.041	
II. annual result																		
1. total revenues	T€/a	0	1.388	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	1.851	,
2. overall costs	T€/a	0	-1.734	-2.300	-2.287	-2.272	-2.257	-2.241	-2.223	-2.205	-2.186	-2.165	-2.143	-2.120	-2.095	-2.069	-2.041	-:
	T ∉ a	0	-346	-450	-436	-422	-406	-390	-373	-354	-335	-314	-292	-269	-245	-218	-191	

profitability assessment

Carsten Besser project manager: telephone extension - 34

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seeger.ag

-218

-245

1.059

SEEGER

-43

-191

project: 1260_LI_Smethport alternative 1: thermal oil boiler with ORC module

T€/a

profit and loss account /cash flow forecast (T€) load point 1: dimensioning e-mail: cbe@seeger.ag 01.07.2011 status quo 27. November 2009 begin of operation: IV. cash flow before debt service (loan capital) 1. annual result T€/a -346 -450 -436 -422 -406 -390 -373 -354 -335 -314 -292 -269 2. depreciation T€/a 3. interests on loan capital T€/a 4. interests on partner's loan T€/a cash flow before debt service (loan capital) T€a V. debt service (loan capital) 1. interests T€/a 2. amortization T€/a T**∉**a annual debt service status quo of loan at end of year T€ 4.829 4.607 4.372 4.122 3.857 3.576 3.277 2.960 2.624 2.267 1.888 1.486

VI	. cash flow after debt service (loan capital)																		
1.	cash flow before debt service (loan capital)	T€/a	0	576	768	768	768	768	768	768	768	768	768	768	768	768	768	768	192
2.	debt service (loan capital)	T€/a	0	-380	-507	-507	-507	-507	-507	-507	-507	-507	-507	-507	-507	-507	-507	-507	-127
	cash flow after debt service (loan capital)	T ∉ a	0	196	262	262	262	262	262	262	262	262	262	262	262	262	262	262	65
•	, , , , , , , , , , , , , , , , , , , ,	. 44	•					202											
	,	. 40	· ·				202	202					-0-	-0-	-0-				

2.	interest on partner's loan	T€/a	0	-160	-214	-214	-214	-214	-214	-214	-214	-214	-214	-214	-214	-214	-214	-214	-53
	cash flow after debt service and interest	on T ∉ a	0	36	48	48	48	48	48	48	48	48	48	48	48	48	48	48	12
VII	I. growths in equity																		
1.	investments per year	T€/a	0	-2.137	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.	cash flow after debt service (loan capital)	T€/a	0	196	262	262	262	262	262	262	262	262	262	262	262	262	262	262	65
	growths in equity	T ∉ a	0	-1.941	262	262	262	262	262	262	262	262	262	262	262	262	262	262	65
	growths in equity accumulated	T€	0	-1.941	-1.679	-1.418	-1.156	-894	-632	-371	-109	153	415	676	938	1.200	1.461	1.723	1.789
IX.	internal rate of return																		
1.	growths in equity	T€/a	0	-1.941	262	262	262	262	262	262	262	262	262	262	262	262	262	262	65
	internal rate of return		10,0%																

(from cash flow + interest on equity capital)

1. cash flow after debt service (loan capital)

project: 1260_LI_Smethport

sensitivity analysis

status quc 27. November 2009

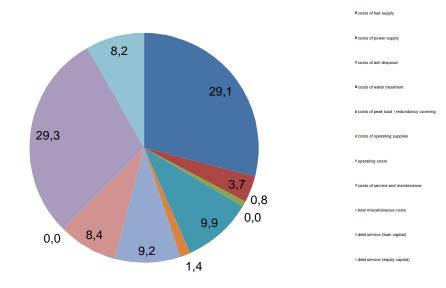
alternative 1: thermal oil boiler with ORC module

load point 1: dimensioning

project manager: Carsten Besser **telephone extensio** - 34

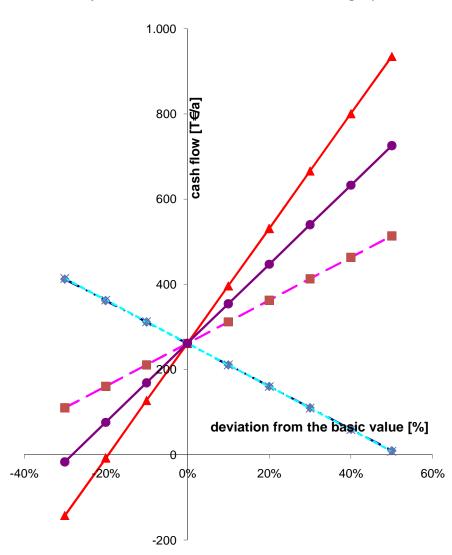
e-mail: cbe@seeger.ag

SEEGER ENGINEERING AG
Industriestr. 25-27
37235 Hessisch Lichtenau
Tel: 0 56 02 / 93 79 -0
Fax: 0 56 02 / 28 89
info@seeger.ag

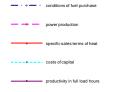


A. marginal costing	
a) heat output	32.725 MWh/a

specific costs of heat generation	[T ∉ a]	[∉ MWh]	[%]
a) costs of fuel supply	503	15,38	29,1
o) costs of power supply	64	1,96	3,7
c) costs of ash disposal	14	0,44	0,8
d) costs of water treatment	0	0,00	0,0
e) costs of peak load / redundancy covering	171	5,22	9,9
) costs of operating supplies	25	0,76	1,4
g) operating costs	160	4,89	9,2
n) costs of service and maintenance	145	4,44	8,4
) total miscellaneous costs	0	0,00	0,0
total operating costs	1.082	33,08	62,5
) debt service (loan capital)	507	15,48	29,3
debt service (equity capital)	142	4,35	8,2
costs of capital	649	19,83	37,5


marginal costing of heat generation	1.731	52,91	100
(without power feed-in)			
k) revenues from power feed-in	504	15,40	29
k) revenues from fuel saving	0	0,00	0
l) revenues from sale of green certificates	0	0,00	0
marginal costing of heat generation	1.227	37,51	71
(with power feed-in)			

Wesentliche spezifische Kosten der Wärmegestehung in %



B. sensitivity analysis	cash flow a	262 T€	∄ a	(basic value)								
	productivity in full load hours											
output parameter	unit	value ∅	-30%	-20%	-10%	0%	10%	20%	30%	40%	50%	
conditions of fuel purchase	€ /MWh	23,33	413	362	312	262	211	161	111	60	10	
power production	TMWh/a	6	111	161	211	262	312	363	413	463	514	
specific sales terms of heat	€ /MWh	41,15	-142	-8	127	262	396	531	666	800	935	
costs of capital	€⁄a	507	414	363	312	262	211	160	110	59	8	
productivity in full load hours	h/a	8.000	-17	76	169	262	355	447	540	633	726	

Sensitivity of the cash flow to the deviation of single parameters

The steeper the gradient of one single parameter, no matter if positive or negative, the more sensitive is the considered parameter to a deviation from the basic value.

biomass combined heat and power plant profitability assessment

project: 1260_LI_Smethport investment and financing plan

27. November 2009 status quo:

p) fire extinguishing installation

alternative 2: steam boiler with heating type turbine load point 1: dimensioning

project manag Carsten Besser telephone exte - 34 e-mail: cbe@seeger.ag

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seeger.ag

1.	investment cost estimate biomass heat a	and power p
	HKW (Dampf-Kraft-Prozess)	14,0 MW FW
1.1	technology	€ne
a)	separator for impurities (overlengths, ferrous m	(
b)	fuel storage and transport	500.00
c)	furnace and boiler	4.250.00
d)	flue gas cleaning (electrostatic precipitator)	475.00

D)	ruei storage and transport	500.00
c)	furnace and boiler	4.250.00
d)	flue gas cleaning (electrostatic precipitator)	475.00
e)	emission measurement	100.00

f)	flue gas discharge	55.000
g)	water treatment	100.000
h)	power generation	2.250.000
i)	vacuum condenser	350.000

)	heat exchanger / cooler	350.000
()	piping and heat distribution	600.000
)	switchgear, transformer, cabeling	600.000

m)	process control enginnering	150.000
n)	compressed air generation	35.000
o)	crane (turbine house)	30.000

50.000

q)	building services	150.000
r)	wheel loader	160.000
s)	biomass hot water boiler	0

t) gas-fired peak load boiler 250.000 u) truck weigh station 35.000 v) emergency power supply 40.000

w) heat grid x) transfer station y) truck dumper 700.000

	total technology	11.230.000
z)		0

unconsidered options

separator for impurities (overlengths, ferrous me	250.000
silo for ashes	250.000
SNCR nitrogen oxide reduction facility	225.000

^{*} all information based on current estimated prices

1.2	real estate	€net					
a)	real estate costs	0					
b)	development costs	0					
	total real estate	0					

1.3	3 construction	€net
a)	buildings	2.000.000
b)	outside facilities	400.000
c)	civil engineering	200.000
	total construction	2.600.000

	total engineering services	830.000
d)	start-up costs of project	0
c)	additional construction costs	0
b)	permission and surveys	0
a)	architect and engineering services	830.000
1.4	engineering services	€net

		€net
subtotal		14.660.000
miscellaneous	2,5%	366.500
overall investment		15.026.500

2. financing plan

2.1	subsidies	€net
a)	overall investment	15.026.500
b)	eligible investment volume	7.333.333
c)	quota of eligible investment	50,0%
	total subsidies	3.666.667

2.2	additional charges	€net
a)	financing costs (0,5%)	41.351
b)	interest during investment period (5,0%)	413.514
c)	miscellaneous	
	total additional charges	454.866

2.3	financing	€net	
a)	investment volume to be	11.814.699	
b)	equity capital	30%	3.544.410
c)	loan capital	70%	8.270.289
	overall investment min	11.814.699	

	€net
overall investment incl. additional charges	15.481.366
subsidies	3.666.667
total amount to be financed	11.814.699
equity capital	3.544.410
loan capital	8.270.289

biomass combined heat and power plant profitability assessment project: 1260_LI_Smethport

amortization schedule (T€)
status quo: 27. November 2009

alternative 2: steam boiler with heating type turbine

load point 1: dimensioning

project manager: Carsten Besser telephone extensior - 34

e-mail: cbe@seeger.ag

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seeger.ag

I. time schedule		2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
1. quarter	status quo of investment	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2. quarter	status quo of investment	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
3. quarter	status quo of investment	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
4. quarter	status quo of investment	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
investments per year		0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
status quo of i	nvestment at end of year	0%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

II. amortization calculation

loan capital	8.270	T€
interest	6,00%	
payout	100%	
life of loan	15	years
number of installme	4	times/year
annuity	210	T€/quarter
	10,30	%

		2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
			0.070	7.040	7.545	7.1.10	0.700	0.000	5.000	5.000	4.770	4.007	0.000	0.000	0.004	4.570		
1. quarter	status quo of loan	0	8.270	7.919	7.545	7.149	6.729	6.283	5.809	5.306	4.773	4.207	3.606	2.968	2.291	1.572	809	0
	interest	0	124	119	113	107	101	94	87	80	72	63	54	45	34	24	12	0
	amortization	0	86	91	97	103	109	116	123	130	138	147	156	165	176	186	198	0
	annuity_	0	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	0
2. quarter	status quo of loan	0	8.184	7.827	7.449	7.047	6.620	6.167	5.686	5.176	4.634	4.060	3.450	2.802	2.115	1.386	612	0
	interest	0	123	117	112	106	99	93	85	78	70	61	52	42	32	21	9	0
	amortization	0	87	93	98	104	111	118	125	132	140	149	158	168	178	189	201	0
	annuity_	0	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	0
3. quarter	status quo of loan	0	8.097	7.735	7.350	6.942	6.509	6.049	5.561	5.044	4.494	3.911	3.291	2.634	1.937	1.196	411	0
	interest	0	121	116	110	104	98	91	83	76	67	59	49	40	29	18	6	0
	amortization	0	89	94	100	106	112	119	127	134	143	151	161	170	181	192	204	0
	annuity_	0	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	0
4. quarter	status quo of loan	0	8.009	7.641	7.251	6.836	6.397	5.930	5.435	4.909	4.351	3.759	3.131	2.464	1.756	1.004	207	0
	interest	0	120	115	109	103	96	89	82	74	65	56	47	37	26	15	3	0
	amortization	0	90	95	101	107	114	121	128	136	145	154	163	173	184	195	207	0
	annuity	0	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	0
status quo of loai	n at end of year	0	7.919	7.545	7.149	6.729	6.283	5.809	5.306	4.773	4.207	3.606	2.968	2.291	1.572	809	0	0
	interest per year	0	488	467	444	420	394	366	337	307	274	239	202	163	121	77	31	0
	amortization per year	0	352	373	396	420	446	474	503	534	566	601	638	677	719	763	809	0
	annuity per year	0	840	840	840	840	840	840	840	840	840	840	840	840	840	840	840	0

profitability assessment project: 1260_LI_Smethport

depreciation and interest rate (T€)

status quo: 27. November 2009

alternative 2: steam boiler with heating type turbine

load point 1: dimensioning

project manager: Carsten Besser

e-mail: cbe@seeger.ag

telephone extension - 34

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seeger.ag

I. interest on partner's loan (equity capital)

1. composition of loan (equity capital)	absolut	in percent
a.) partner A	3.544 T€	100,0 %
b.) partner B	0 T€	0,0 %
c.) partner C	0 T €	0,0 %
loan	3.544 T€	100,0 %
interest rate	10,00 %	
life of loan	15 Jahre	

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
2. interest on partner's loan [€a]	0	266	354	354	354	354	354	354	354	354	354	354	354	354	354	354	89

II depreciation

1. depreciation parameters

a.) depreciation type	linear
b.) recovery period	15 years
c.) depreciable amount	15.481 T€

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
2. annual depreciation [€a]	0	774	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	258

profitability assessment

project: 1260_LI_Smethport revenues (T€)

status 27. November 2009

alternative 2: steam boiler with heating type turbine

load point 1: dimensioning

begin of operation 01.04.2012

project manager Carsten Besser
telephone exten: - 34

e-mail: cbe@seeger.ag

SEEGER ENGINEERING AG
Industriestr. 25-27
37235 Hessisch Lichtenau
Tel: 0 56 02 / 93 79 -0
Fax: 0 56 02 / 28 89
info@seeger.ag

	Il revenues	T€a		3.250			2.437	3.250	3.250	3.250		3.250	3.250		3.250		3.250	3.250			3.250	
ı	revenues from sale of greer	T€/a		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
_!	price per certificate	€ /piece	0		0,0%	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
	certificates per year	pieces	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1. s	ale of green certificates																					
-	revenues from fuel saving	T€/a		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-	fuel price	€/I			0,0%	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
	annual fuel saving	TI/a	3.943			0	2.957	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	
. fı	uel saving (fuel oil etc.)																					
ı	revenues from heat sale	T€/a		1.445		0	1.084	1.445	1.445	1.445	1.445	1.445	1.445	1.445	1.445	1.445	1.445	1.445	1.445	1.445	1.445	
-	heat price	€/MWh	44,15		0,0%	0,00	44,15	44,15	44,15	44,15	44,15	44,15	44,15	44,15	44,15	44,15	44,15	44,15	44,15	44,15	44,15	
:	annual heat supply	MWh/a	32.725			0	24.544	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	
	average capacity	MW	3,74		0,0%	0,00	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	
. h	eat sale																					
ſ	revenues from power feed-i	T€/a		1.805		0	1.354	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	
-	power feed-in tariff	€/MWh	86,67		0,0%	0,00	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	
1	annual power generation	MWh/a	20.824			0	15.618	20.824	20.824	20.824	20.824	20.824	20.824	20.824	20.824	20.824	20.824	20.824	20.824	20.824	20.824	
	average capacity	MW	2,603			0,000	2,603	2,603	2,603	2,603	2,603	2,603	2,603	2,603	2,603	2,603	2,603	2,603	2,603	2,603	2,603	
. p	ower feed-in																					
eve	enues				price inflation																	
ļ	redundancy boiler	h/a	760			0	570	760	760	760	760	760	760	760	760	760	760	760	760	760	760	
	heat generation	h/a	8.760			0	6.570	8.760	8.760	8.760	8.760	8.760	8.760	8.760	8.760	8.760	8.760	8.760	8.760	8.760	8.760	
1	power generation	h/a	8.000			0	6.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	
ſ	biomass CHP plant	h/a	8.000			0	6.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	
	perating hours																					
gen	eral conditions				workload	0%	75%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	

profitability assessment

project: 1260_LI_Smethport

operating costs (T€)

alternative 2: steam boiler with heating type turbine load point 1: dimensioning

project manager Carsten Bessertelephone extens - 34

e-mail:

cbe@seeger.ag

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seege.ag

status 27. November 2009					begin of o	peration	01.04	.2012										1110@30			NGINEERI
					2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	202
. general conditions				workload	0%	75%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%		100%	100%	25%
design data												,.									,
operating hours CHP	h/a	8.000		_	0	6.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	2.00
average fuel power input	MW	13,1		0,0%	0,0	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,
annual fuel energy	MWh/a	104.800			0		104.800	104.800	104.800		104.800			104.800			104.800			104.800	26.20
redundancy boiler	h/a	760			0	570	760	760	760	760	760	760	760	760	760	760	760	760	760	760	19
II. usage-bound costs				price inflation																	
1. fuel supply																					
average calorific value of fuel	MWh/t	2,3		_																	
required amount of fuel	t/a	45.565			0	34.174	45.565	45.565	45.565	45.565	45.565	45.565	45.565	45.565	45.565	45.565	45.565		45.565	45.565	11.39
specific fuel costs	€/t	23,33		0,0%	0,00	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,3
costs of fuel supply	T€/a		1.063		0	797	1.063	1.063	1.063	1.063	1.063	1.063	1.063	1.063	1.063	1.063	1.063	1.063	1.063	1.063	26
2. power supply																					
average capacity	kW	400		_	0	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	40
annual power requirement	MWh/a	3.200			0	2.400	3.200	3.200	3.200	3.200	3.200	3.200	3.200	3.200	3.200	3.200	3.200	3.200	3.200	3.200	80
specific electricity costs	€/MWh	53,33		0,0%	0,00	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33		53,33	53,33	53,3
costs of power supply	T€/a		171		0	128	171	171	171	171	171	171	171	171	171	171	171	171	171	171	4
3. ash disposal																					
annual amount of ash	t/a	2.278			0	1.709	2.278	2.278	2.278	2.278	2.278	2.278	2.278	2.278	2.278	2.278	2.278		2.278	2.278	57
specific costs of ash disposal	€ /t	13,33		0,0%	0,00	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,3
costs of ash disposal	T€/a		30		0	23	30	30	30	30	30	30	30	30	30	30	30	30	30	30	
4. water treatment																					
water amount treated per hour	m ³ /h	1,5			1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5		1,5	1,5	1
specific costs of water treatment	€/m³	4,00		0,0%	0,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,0
costs of water treatment	T€/a		48		0	36	48	48	48	48	48	48	48	48	48	48	48	48	48	48	1
5. peak load / redundancy covering																					
annual heat capacity of fuel	MWh/a	6.400			0	4.800	6.400	6.400	6.400	6.400	6.400	6.400	6.400	6.400	6.400	6.400	6.400	6.400	6.400	6.400	1.60
specific costs of heat capacity	€/MWh	26,67		0,0%	0,00	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,6
costs of peak load / redundancy coveri	T€/a		171		0	128	171	171	171	171	171	171	171	171	171	171	171	171	171	171	4
6. operating supplies	T€⁄a	25	25	0,0%	0	19	25	25	25	25	25	25	25	25	25	25	25	25	25	25	
III. subtotal operating costs	T€/a		1.508		0	1.131	1.508	1.508	1.508	1.508	1.508	1.508	1.508	1.508	1.508	1.508	1.508	1.508	1.508	1.508	37

profitability assessment project: 1260_LI_Smethport

operating costs (T€)
status 27. November 2009

alternative 2: steam boiler with heating type turbine

load point 1: dimensioning

begin of operation 01.04.2012

project manager Carsten Besser
telephone exten: - 34

e-mail: cbe@seeger.ag

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seege.ag

Clarac Ellitorellibel Eco	, ,				bog o	oporation	0													<u>L \\\</u>	IGHALLIA
					2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	202
IV. general conditions				workload	0%	75%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	259
design data																					
operating hours CHP	h/a	8.000			0	6.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	2.00
average fuel power input	MW	13,1		0,0%	0,0	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,1	13,
annual fuel energy	MWh/a	104.800			0	78.600	104.800	104.800	104.800	104.800	104.800	104.800	104.800	104.800	104.800	104.800	104.800	104.800	104.800 1	104.800	26.20
redundancy boiler	h/a	760			0	570	760	760	760	760	760	760	760	760	760	760	760	760	760	760	19
V. operating costs				price inflation																	
1. salaries and wages																					
personnel requirement	employees	6,0			0	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
labor costs	T€/a employee	40		0,0%	0	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	4
operating costs	T€/a		240		0	180	240	240	240	240	240	240	240	240	240	240	240	240	240	240	6
2. service and maintenance																					
specific costs as % of investment	%	1,5		0,0%	0,0	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,
costs of service and maintenance	T€/a		207		0	156	207	207	207	207	207	207	207	207	207	207	207	207	207	207	5
3. miscellaneous																					
management	T€/a			0,0%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
insurance	T€/a	0		0,0%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
total miscellaneous costs	T€/a		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
VI. subtotal operating costs	T€/a		447		0	336	447	447	447	447	447	447	447	447	447	447	447	447	447	447	11
VII total operating costs	T€a		1.955		0	1.467	1.955	1.955	1.955	1.955	1.955	1.955	1.955	1.955	1.955	1.955	1.955	1.955	1.955	1.955	48

biomass combined heat and power plant profitability assessment

project: 1260_LI_Smethport

alternative 2: steam boiler with heating type turbine load point 1: dimensioning

project manager: Carsten Besser **telephone extension** - 34

Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seeger.ag

SEEGER ENGINEERING AG

SEEGER ENGINEERING

profit and loss account /cash flow forecast (г ⊜				load poin		_	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•	-mail:	<u>c</u>	be@seeger.	ag) 56 02 / 28)@seeger.a	89 🚄	EEGE
status quo 27. November 2009				begin of	operation:	01.04.	2012								<u> </u>		<u>E</u>	NGINEE
		2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	20
. revenues																		
1. revenues from power feed-in	T€/a	0	1.354	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	1.805	
2. revenues from heat sale	T€/a	0	1.084	1.445	1.445	1.445	1.445	1.445	1.445	1.445	1.445	1.445	1.445	1.445	1.445	1.445	1.445	
3. revenues from fuel saving	T€/a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4. revenues from sale of green certificates	T€/a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
total revenues	T ∉ a	0	2.437	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	
II. costs																		
1. costs of fuel supply	T€/a	0	797	1.063	1.063	1.063	1.063	1.063	1.063	1.063	1.063	1.063	1.063	1.063	1.063	1.063	1.063	
2. costs of power supply	T€/a	0	128	171	171	171	171	171	171	171	171	171	171	171	171	171	171	
3. costs of ash disposal	T€/a	0	23	30	30	30	30	30	30	30	30	30	30	30	30	30	30	
4. costs of water treatment	T€/a	0	36	48	48	48	48	48	48	48	48	48	48	48	48	48	48	
5. costs of peak load / redundancy covering	T€/a	0	128	171	171	171	171	171	171	171	171	171	171	171	171	171	171	
6. costs of operating supplies	T€/a	0	19	25	25	25	25	25	25	25	25	25	25	25	25	25	25	
7. operating costs	T€/a	0	180	240	240	240	240	240	240	240	240	240	240	240	240	240	240	
8. costs of service and maintenance	T € /a	0	156	207	207	207	207	207	207	207	207	207	207	207	207	207	207	
9. costs of management	T € /a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10. insurance costs	T€/a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11. depreciation	T€/a	0	774	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	1.032	
12. interests on loan capital	T€/a	0	488	467	444	420	394	366	337	307	274	239	202	163	121	77	31	
13. interests on partner's loan	T€/a	0	266	354	354	354	354	354	354	354	354	354	354	354	354	354	354	
overall costs	T ∉ a	0	2.995	3.809	3.786	3.761	3.736	3.708	3.679	3.648	3.616	3.581	3.544	3.505	3.463	3.419	3.372	;
III. annual result																		
1. total revenues	T€/a	0	2.437	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	3.250	
2. overall costs	T€/a	0	-2.995	-3.809	-3.786	-3.761	-3.736	-3.708	-3.679	-3.648	-3.616	-3.581	-3.544	-3.505	-3.463	-3.419	-3.372	
	T ∉ a	0	-558	-559	-536	-512	-486	-459	-430	-399	-366	-331	-294	-255	-214	-170	-123	

biomass combined heat and power plant profitability assessment

alternative 2: steam boiler with heating type turbine

project manager:

Carsten Besser

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89

telephone extension - 34 project: 1260_LI_Smethport profit and loss account /cash flow forecast (T€) load point 1: dimensioning e-mail: cbe@seeger.ag **SEEGER** info@seeger.ag status quo 27. November 2009 begin of operation: 01.04.2012 2012 2014 2024 2026 2027 2011 2013 2015 2016 2017 2018 2019 2020 2021 2022 2023 2025 IV. cash flow before debt service (loan capital) 1. annual result T€/a 0 -558 -536 -486 -430 -366 -331 -294 -255 -214 -170 -123 -23 -559 -512 -459 -399 T€/a 0 774 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 1.032 258 2. depreciation 3. interests on loan capital T€/a 0 488 467 444 420 394 366 337 307 274 239 202 163 121 77 31 0 89 T€/a 0 354 4. interests on partner's loan 266 354 354 354 354 354 354 354 354 354 354 354 354 354 cash flow before debt service (loan capital) T€a 0 971 1.294 1.294 1.294 1.294 1.294 1.294 1.294 1.294 1.294 1.294 1.294 1.294 1.294 1.294 324 V. debt service (loan capital) 1. interests T€/a 0 488 467 444 420 394 366 337 307 274 239 202 163 121 77 31 0 T€/a 0 352 373 396 420 446 474 503 534 566 601 638 677 719 763 809 0 2. amortization T**∉**a 0 840 840 840 840 840 0 annual debt service 840 840 840 840 840 840 840 840 840 840 0 status quo of loan at end of year T€ 0 7.919 7.545 7.149 6.729 6.283 5.809 5.306 4.773 4.207 3.606 2.968 2.291 1.572 809 VI. cash flow after debt service (loan capital) 1. cash flow before debt service (loan capital) 971 1.294 1.294 1.294 1.294 1.294 1.294 1.294 1.294 1.294 1.294 1.294 1.294 T€/a 0 1.294 1.294 324 2. debt service (loan capital) T€/a 0 -840 -840 -840 -840 -840 -840 -840 -840 -840 -840 -840 -840 -840 -840 -840 0 131 454 454 454 454 454 454 454 454 454 454 324 cash flow after debt service (loan capital) T**∉**a 0 454 454 454 454 VII. cash flow after debt service and interest on partner's loan 1. cash flow after debt service (loan capital) T€/a 0 131 454 454 454 454 454 454 454 454 454 454 454 454 454 454 324 T€/a 0 -89 2. interest on partner's loan -266 -354 -354 -354 -354 -354 -354 -354 -354 -354 -354 -354 -354 -354 -354 cash flow after debt service and interest on T€a 0 -135 100 100 100 100 100 100 100 100 100 100 100 100 100 100 235 VIII. growths in equity 1. investments per year T€/a 0 -3.544 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2. cash flow after debt service (loan capital) T€/a 0 131 454 454 454 454 454 454 454 454 454 454 454 454 454 454 324 T**∉**a -3.414 454 454 454 454 454 454 454 454 454 454 324 growths in equity 454 454 454 454 T€ -235 3.268 growths in equity accumulated 0 -3.414 -2.960 -2.505 -2.051 -1.597 -1.143 -689 220 674 1.128 1.582 2.036 2.490 2.944 IX. internal rate of return

internal rate of return

T€/a

0

10,0%

-3.414

454

454

454

454

454

454

454

454

454

454

454

454

454

454

324

(from cash flow + interest on equity capital)

1. growths in equity

project: 1260_LI_Smethport

sensitivity analysis

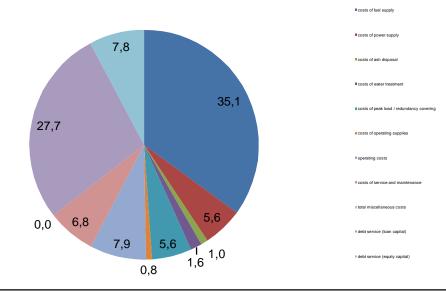
status quc 27. November 2009

alternative 2: steam boiler with heating type turbine load point 1: dimensioning

project manager: Carsten Besser **telephone extensio** - 34

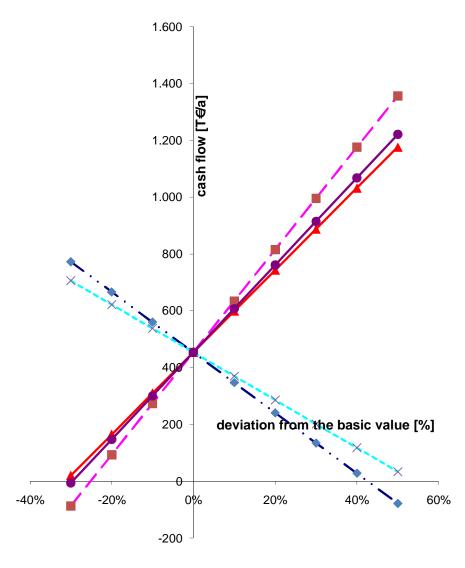
e-mail: cbe@seeger.ag

SEEGER ENGINEERING AG
Industriestr. 25-27
37235 Hessisch Lichtenau
Tel: 0 56 02 / 93 79 -0
Fax: 0 56 02 / 28 89
info@seeger.ag

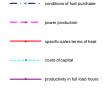


A. marginal costing	
a) heat output	32.725 MWh/a

pecific costs of heat generation	[T€a]	[∉ MWh]	[%]
a) costs of fuel supply	1.063	32,49	35,1
o) costs of power supply	171	5,22	5,6
c) costs of ash disposal	30	0,93	1,0
l) costs of water treatment	48	1,47	1,6
e) costs of peak load / redundancy covering	171	5,22	5,6
costs of operating supplies	25	0,76	0,8
operating costs	240	7,33	7,9
) costs of service and maintenance	207	6,34	6,8
total miscellaneous costs	0	0,00	0,0
total operating costs	1.955	59,75	64,5
debt service (loan capital)	840	25,67	27,7
debt service (equity capital)	236	7,22	7,8
costs of capital	1.076	32,89	35,5


marginal costing of heat generation	3.032	92,64	100
(without power feed-in)			
k) revenues from power feed-in	1.805	55,15	60
k) revenues from fuel saving	0	0,00	0
revenues from sale of green certificates	0	0,00	0
marginal costing of heat generation	1.227	37,49	40
(with power feed-in)			

Wesentliche spezifische Kosten der Wärmegestehung in %



B. sensitivity analysis	cash flow a	454 Tŧ	∉ a	(basic value)											
			productivity in full load hours												
output parameter	unit	value ∅	-30%	-20%	-10%	0%	10%	20%	30%	40%	50%				
conditions of fuel purchase	€/MWh	23,33	773	667	560	454	348	242	135	29	-77				
power production	TMWh/a	21	-87	93	274	454	635	815	996	1.176	1.357				
specific sales terms of heat	€ /MWh	44,15	21	165	310	454	599	743	888	1.032	1.177				
costs of capital	€⁄a	840	706	622	538	454	370	286	202	118	34				
productivity in full load hours	h/a	8.000	-6	147	301	454	608	761	914	1.068	1.221				

Sensitivity of the cash flow to the deviation of single parameters

The steeper the gradient of one single parameter, no matter if positive or negative, the more sensitive is the considered parameter to a deviation from the basic value.

biomass combined heat and power plant profitability assessment

project: 1260_LI_Smethport investment and financing plan

status quo: 27. November 2009

alternative 3: steam boiler with condensing type turbine load point 1: dimensioning

project manag Carsten Besser telephone exte - 34 e-mail: cbe@seeger.ag SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seeger.ag

	HKW (Dampf-Kraft-Prozess)	22,0 MW FWL
1.1	technology	€net
1)	separator for impurities (overlengths, ferrous me	0
)	fuel storage and transport	650.000
:)	furnace and boiler	6.055.000
l)	flue gas cleaning (electrostatic precipitator)	605.000
)	emission measurement	100.000
)	flue gas discharge	65.000
g)	water treatment	150.000
า)	power generation	2.850.000
)	vacuum condenser	1.840.000
)	heat exchanger / cooler	0
()	piping and heat distribution	900.000
)	switchgear, transformer, cabeling	700.000
n)	process control enginnering	150.000
1)	compressed air generation	40.000
)	crane (turbine house)	35.000
)	fire extinguishing installation	50.000
a)	building services	150.000
)	wheel loader	160.000
s)	biomass hot water boiler	0
)	gas-fired peak load boiler	250.000
ı)	truck weigh station	35.000
/)	emergency power supply	40.000
v)	heat grid	0
()	transfer station	C
/)	truck dumper	700.000
<u>:</u>)		0
	total technology	15.525.000
ınc	considered options	
	separator for impurities (overlengths, ferrous me	300.000
	silo for ashes	300.000

SNCR nitrogen oxide reduction facility

* all information based on current estimated prices

250.000

	total real estate	0
b)	development costs	0
a)	real estate costs	0
1.2	real estate	€net

1.3	construction	€net
a)	buildings	2.500.000
b)	outside facilities	500.000
c)	civil engineering	300.000
	total construction	3.300.000

1.4	engineering services	€net
a)	architect and engineering services	1.110.000
b)	permission and surveys	0
c)	additional construction costs	0
d)	start-up costs of project	0
	total engineering services	1.110.000

		€net
subtotal		19.935.000
miscellaneous	2,5%	498.375
overall investment		20.433.375

2. financing plan

2.1	subsidies	€net
a)	overall investment	20.433.375
b)	eligible investment volume	7.333.333
c)	quota of eligible investment	50,0%
	total subsidies	3.666.667

2.2	additional charges	€net
a)	financing costs (0,5%)	61.033
b)	interest during investment period (5,0%)	610.333
c)	miscellaneous	
	total additional charges	671.366

2.3	financing	€net	
a)	investment volume to be	e financed	17.438.074
b)	equity capital	30%	5.231.422
c)	loan capital	70%	12.206.652
	overall investment min	17.438.074	

	€net
overall investment incl. additional charges	21.104.741
subsidies	3.666.667
total amount to be financed	17.438.074
equity capital	5.231.422
Ioan capital	12.206.652

27. November 2009

project: 1260_LI_Smethport amortization schedule (T€)

status quo:

alternative 3: steam boiler with condensing type turbine telephone extensior - 34

load point 1: dimensioning

project manager: Carsten Besser

e-mail:

cbe@seeger.ag

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seeger.ag

I. time schedule		2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
1. quarter	status quo of investment	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2. quarter	status quo of investment	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
3. quarter	status quo of investment	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
4. quarter	status quo of investment	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
investments p	er year	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
status quo of i	nvestment at end of year	0%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

II. amortization calculation

12.207	T€
6,00%	
100%	
15	years
4	times/year
310	T€/quarter
10,30	%
	6,00% 100% 15 4 310

		2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
			40.00=	44.000	11.10=	10.550	2 222	2.272	0.774	=				1 000			4.40=	
1. quarter	status quo of loan	0	12.207	11.688	11.137	10.552	9.932	9.273	8.574	7.832	7.045	6.209	5.322	4.380	3.381	2.320	1.195	0
	interest	0	183	175	167	158	149	139	129	117	106	93	80	66	51	35	18	0
	amortization	0	127	135	143	152	161	171	181	192	204	217	230	244	259	275	292	0
	annuity_	0	310	310	310	310	310	310	310	310	310	310	310	310	310	310	310	0
2. quarter	status quo of loan	0	12.080	11.553	10.994	10.400	9.771	9.102	8.393	7.640	6.840	5.992	5.092	4.136	3.122	2.045	903	0
	interest	0	181	173	165	156	147	137	126	115	103	90	76	62	47	31	14	0
	amortization	0	129	137	145	154	163	173	184	195	207	220	234	248	263	279	296	0
	annuity_	0	310	310	310	310	310	310	310	310	310	310	310	310	310	310	310	0
3. quarter	status quo of loan	0	11.951	11.416	10.849	10.246	9.607	8.929	8.209	7.444	6.633	5.772	4.858	3.888	2.859	1.766	606	0
	interest	0	179	171	163	154	144	134	123	112	99	87	73	58	43	26	9	0
	amortization	0	131	139	147	156	166	176	187	198	210	223	237	252	267	283	301	0
	annuity_	0	310	310	310	310	310	310	310	310	310	310	310	310	310	310	310	0
4. quarter	status quo of loan	0	11.820	11.278	10.702	10.090	9.441	8.753	8.022	7.246	6.422	5.548	4.621	3.636	2.591	1.482	305	0
	interest	0	177	169	161	151	142	131	120	109	96	83	69	55	39	22	5	0
	amortization	0	133	141	149	159	168	179	190	201	214	227	241	255	271	288	305	0
	annuity	0	310	310	310	310	310	310	310	310	310	310	310	310	310	310	310	0
status quo of loar	n at end of year	0	11.688	11.137	10.552	9.932	9.273	8.574	7.832	7.045	6.209	5.322	4.380	3.381	2.320	1.195	0	0
	interest per year	0	721	689	655	619	581	541	498	452	404	353	298	241	179	114	45	0
	amortization per year	0	519	551	585	621	659	699	742	787	836	887	941	999	1.061	1.126	1.195	0
	annuity per year	0	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	0

profitability assessment

project: 1260_LI_Smethport depreciation and interest rate (T€)

status quo:

27. November 2009

alternative 3: steam boiler with condensing type turbine

load point 1: dimensioning

project manager: Carsten Besser telephone extension - 34

e-mail: cbe@seeger.ag

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seeger.ag

I. interest on partner's loan (equity capital)

1. composition of loan (equity capital)	absolut	in percent
a.) partner A	5.231 T€	100,0 %
b.) partner B	0 T€	0,0 %
c.) partner C	0 T €	0,0 %
loan	5.231 T€	100,0 %
interest rate	10,00 %	
life of loan	15 Jahre	

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
2. interest on partner's loan [€a]	0	392	523	523	523	523	523	523	523	523	523	523	523	523	523	523	131

II depreciation

1. depreciation parameters

a.) depreciation type	linear
b.) recovery period	15 years
c.) depreciable amount	21.105 T€

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
2. annual depreciation [€a]	0	1.055	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	352

profitability assessment

project: 1260_LI_Smethport

revenues (T€) status 27. November 2009

alternative 3: steam boiler with condensing type turbine

begin of operation 01.04.2012

load point 1: dimensioning

project manager Carsten Besser
telephone exten: - 34

e-mail: cbe@seeger.ag

SEEGER ENGINEERING AG
Industriestr. 25-27
37235 Hessisch Lichtenau
Tel: 0 56 02 / 93 79 -0
Fax: 0 56 02 / 28 89
info@seeger.ag

otal revenues	T€a		4.686		0	3.515	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	1.
revenues from sale of green	T€/a		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
price per certificate	€ /piece	0		0,0%	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	(
certificates per year	pieces	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
sale of green certificates																					
revenues from fuel saving	T€/a		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
fuel price	€/I			0,0%	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
annual fuel saving	TI/a	3.943			0	2.957	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	3.943	
fuel saving (fuel oil etc.)																					
revenues from heat sale	T€/a		1.312		0	984	1.312	1.312	1.312	1.312	1.312	1.312	1.312	1.312	1.312	1.312	1.312	1.312	1.312	1.312	
heat price	€/MWh	40,10		0,0%	0,00	40,10	40,10	40,10	40,10	40,10	40,10	40,10	40,10	40,10	40,10	40,10	40,10	40,10	40,10	40,10	
annual heat supply	MWh/a	32.725			0	24.544	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	32.725	
average capacity	MW	3,74		0,0%	0,00	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	3,74	
heat sale																					
revenues from power feed-	T€/a		3.374		0	2.530	3.374	3.374	3.374	3.374	3.374	3.374	3.374	3.374	3.374	3.374	3.374	3.374	3.374	3.374	
power feed-in tariff	€/MWh	86,67		0,0%	0,00	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	86,67	
annual power generation	MWh/a	38.928			0		38.928	38.928	38.928	38.928	38.928	38.928		38.928	38.928	38.928	38.928	38.928	38.928	38.928	
average capacity	MW	4,866			0,000	4,866	4,866	4,866	4,866	4,866	4,866	4,866	4,866	4,866	4,866	4,866	4,866	4,866	4,866	4,866	
power feed-in																					
evenues				inflation																	
				price		0.0															
redundancy boiler	h/a	760			0	570	760	760	760	760	760	760	760	760	760	760	760	760	760	760	
power generation heat generation	h/a h/a	8.000 8.760			0	6.000 6.570	8.000 8.760	8.760	8.000 8.760	8.000 8.760	8.000 8.760	8.000 8.760	8.760								
biomass CHP plant	h/a	8.000			0	6.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	
operating hours																					
eneral conditions				workload	0%	75%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
					2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025		

profitability assessment

operating costs (T€)

project: 1260_LI_Smethport

alternative 3: steam boiler with condensing type turbine load point 1: dimensioning

project manager Carsten Bessertelephone extens - 34

e-mail: <u>cbe@seeger.ag</u>

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seege.ag

atus c 27. November 2009					begin of o	peration	01.04.	2012													NGINEE
					2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	20
general conditions				workload	0%	75%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
design data																					
operating hours CHP	h/a	8.000			0	6.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	2.0
average fuel power input	MW	20,6		0,0%	0,0	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	
annual fuel energy	MWh/a	164.992		2,272	· ·	,	,	164.992	•	•		•	•		•	•		164.992			
redundancy boiler	h/a	760			0	570	760	760	760	760	760	760	760	760	760	760	760	760	760	760	
usage-bound costs				price inflation																	
1. fuel supply																					
average calorific value of fuel	MWh/t	2,3																			
required amount of fuel	t/a	71.736			0	53.802	71.736	71.736	71.736	71.736	71.736	71.736	71.736	71.736	71.736	71.736	71.736	71.736	71.736	71.736	17
specific fuel costs	€/t	23,33		0,0%	0,00	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	23,33	2
costs of fuel supply	T€/a		1.674		0	1.255	1.674	1.674	1.674	1.674	1.674	1.674	1.674	1.674	1.674	1.674	1.674	1.674	1.674	1.674	
2. power supply																					
average capacity	kW	600			0	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	
annual power requirement	MWh/a	4.800			0	3.600	4.800	4.800	4.800	4.800	4.800	4.800	4.800	4.800	4.800	4.800	4.800	4.800	4.800	4.800	1
specific electricity costs	€ /MWh	53,33		0,0%	0,00	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	53,33	5
costs of power supply	T€/a		256		0	192	256	256	256	256	256	256	256	256	256	256	256	256	256	256	
3. ash disposal																					
annual amount of ash	t/a	3.587			0	2.690	3.587	3.587	3.587	3.587	3.587	3.587	3.587	3.587	3.587	3.587	3.587	3.587	3.587	3.587	
specific costs of ash disposal	€/t	13,33		0,0%	0,00	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	13,33	1
costs of ash disposal	T€⁄a		48		0	36	48	48	48	48	48	48	48	48	48	48	48	48	48	48	
4. water treatment																					
water amount treated per hour	m ³ /h	2,5			2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	
specific costs of water treatment	€/m³	4,00		0,0%	0,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	
costs of water treatment	T€⁄a		80		0	60	80	80	80	80	80	80	80	80	80	80	80	80	80	80	
5. peak load / redundancy covering																					
annual heat capacity of fuel	MWh/a	3.500			0	2.625	3.500	3.500	3.500	3.500	3.500	3.500	3.500	3.500	3.500	3.500	3.500	3.500	3.500	3.500	
specific costs of heat capacity	€/MWh	26,67		0,0%	0,00	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	26,67	2
costs of peak load / redundancy coveri	T€/a		93		0	70	93	93	93	93	93	93	93	93	93	93	93	93	93	93	
6. operating supplies	T€/a	25	25	0,0%	0	19	25	25	25	25	25	25	25	25	25	25	25	25	25	25	
. subtotal operating costs	T€/a		2.176		0					2.176	2.176									2.176	

profitability assessment project: 1260_LI_Smethport

operating costs (T€)

alternative 3: steam boiler with condensing type turbine load point 1: dimensioning

project manager Carsten Besser
telephone exten: - 34

e-mail:

cbe@seeger.ag

SEEGER ENGINEERING AG Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89 info@seege.ag

status	27. November 200	na				begin of c	noration	01.04.	, 2012						•				iiio@se	ege.ag	OL CAL	
Status	27. November 200	<u> </u>				begin or c	регаци	01.04.	.2012												EN	IGINEERIN
						2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
IV. general condition	ne				workload	0%	75%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	25%
design data	113				Workload	070	1070	10070	10070	10070	10070	10070	10070	10070	10070	10070	10070	10070	10070	10070	10070	2070
operating hour	rs CHP	h/a	8.000			0	6.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	2.000
average fuel p		MW	20,6		0,0%	0.0	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6
annual fuel en	•	MWh/a	164.992		0,070	- , -	•		164.992 1			•	,	•		•		•	•	•		41.248
redundancy bo	0,	h/a	760			0	570	760	760	760	760	760	760	760	760	760	760	760	760	760	760	190
V energy in a costs					price																	
V. operating costs					inflation																	
1. salaries and w	ages																					
personnel requ	uirement	employees	8,0			0	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
labor costs		T€/a employee	40		0,0%	0	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
operating cost	ts	T€/a		320		0	240	320	320	320	320	320	320	320	320	320	320	320	320	320	320	80
2. service and ma	aintenance																					
specific costs	as % of investment	%	1,5		0,0%	0,0	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
costs of service	ce and maintenance	T€⁄a		282		0	212	282	282	282	282	282	282	282	282	282	282	282	282	282	282	71
3. miscellaneous	•																					
management		T€/a			0,0%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
insurance		T€/a	0		0,0%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
total miscellan	neous costs	T€/a		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VI. subtotal operating	ng costs	T€a		602		0	452	602	602	602	602	602	602	602	602	602	602	602	602	602	602	151
VII total operating co	osts	T€/a		2.778		0	2.084	2.778	2.778	2.778	2.778	2.778	2.778	2.778	2.778	2.778	2.778	2.778	2.778	2.778	2.778	695

biomass combined heat and power plant profitability assessment

project: 1260_LI_Smethport

alternative 3: steam boiler with condensing type turbine

project manager: Carsten Besser **telephone extension** - 34

Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89

SEEGER ENGINEERING AG

profit and loss account /cash flow forecast (Т ⊕				load poin	t 1: dimen	sioning	.		•	-mail:	<u>c</u>	be@seeger.	ag		0 56 02 / 28 @seeger.a	3 89 2	SEEGE
status quo 27. November 2009				begin of o	operation:	01.04.	2012								<u> </u>			NGINEER
		2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	20
I. revenues																		
1. revenues from power feed-in	T€/a	0	2.530	3.374	3.374	3.374	3.374	3.374	3.374	3.374	3.374	3.374	3.374	3.374	3.374	3.374	3.374	8
2. revenues from heat sale	T€/a	0	984	1.312	1.312	1.312	1.312	1.312	1.312	1.312	1.312	1.312	1.312	1.312	1.312	1.312	1.312	3
3. revenues from fuel saving	T€/a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4. revenues from sale of green certificates	T€/a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
total revenues	T ∉ a	0	3.515	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	1.1
II. costs																		
1. costs of fuel supply	T€/a	0	1.255	1.674	1.674	1.674	1.674	1.674	1.674	1.674	1.674	1.674	1.674	1.674	1.674	1.674	1.674	4
2. costs of power supply	T€/a	0	192	256	256	256	256	256	256	256	256	256	256	256	256	256	256	
3. costs of ash disposal	T€/a	0	36	48	48	48	48	48	48	48	48	48	48	48	48	48	48	
4. costs of water treatment	T€/a	0	60	80	80	80	80	80	80	80	80	80	80	80	80	80	80	
5. costs of peak load / redundancy covering	T€/a	0	70	93	93	93	93	93	93	93	93	93	93	93	93	93	93	
6. costs of operating supplies	T€/a	0	19	25	25	25	25	25	25	25	25	25	25	25	25	25	25	
7. operating costs	T€/a	0	240	320	320	320	320	320	320	320	320	320	320	320	320	320	320	
8. costs of service and maintenance	T € /a	0	212	282	282	282	282	282	282	282	282	282	282	282	282	282	282	
9. costs of management	T € /a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10. insurance costs	T € /a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11. depreciation	T € /a	0	1.055	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	3
12. interests on loan capital	T€/a	0	721	689	655	619	581	541	498	452	404	353	298	241	179	114	45	
13. interests on partner's loan	T € /a	0	392	523	523	523	523	523	523	523	523	523	523	523	523	523	523	1
overall costs	T ∉ a	0	4.252	5.398	5.364	5.328	5.290	5.249	5.206	5.161	5.113	5.061	5.007	4.949	4.888	4.823	4.754	1.1
III. annual result																		
1. total revenues	T€/a	0	3.515	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	4.686	1.1
2. overall costs	T€/a	0	-4.252	-5.398	-5.364	-5.328	-5.290	-5.249	-5.206	-5.161	-5.113	-5.061	-5.007	-4.949	-4.888	-4.823	-4.754	-1.1
	T ∉ a	0	-738	-711	-678	-642	-604	-563	-520	-475	-427	-375	-321	-263	-202	-137	-68	

biomass combined heat and power plant profitability assessment

project: 1260_LI_Smethport

alternative 3: steam boiler with condensing type turbine

project manager: Carsten Besser telephone extension - 34

Industriestr. 25-27 37235 Hessisch Lichtenau Tel: 0 56 02 / 93 79 -0 Fax: 0 56 02 / 28 89

SEEGER ENGINEERING AG

profit and loss account /cash flow forecast (T	⊜		untorrio		load poin	t 1: dimen		.g .ypo .c			e-mail:		cbe@seeger	.ag		0 56 02 / 28 0@seeger.a	, 00	EECE
status quo 27. November 2009	•			begin of	operation:	01.04.	2012						-		IIIIC	o e seeger.a		SEEGE NGINEERI
		2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	20
IV. cash flow before debt service (loan capita	n	2011	2012	2010	2014	2010	2010	2017	2010	2010	2020	2021	2022	2020	2024	2020	2020	20
annual result	, T€/a	0	-738	-711	-678	-642	-604	-563	-520	-475	-427	-375	-321	-263	-202	-137	-68	
depreciation	T€/a	0	1.055	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407	3
interests on loan capital	T€/a	0	721	689	655	619	581	541	498	452	404	353	298	241	179	114	45	
interests on partner's loan	T€/a	0	392	523	523	523	523	523	523	523	523	523	523	523	523	523	523	1
cash flow before debt service (loan capita		0	1.431	1.908	1.908	1.908	1.908	1.908	1.908	1.908	1.908	1.908	1.908	1.908	1.908	1.908	1.908	4
V. debt service (loan capital)																		
1. interests	— T€/a	0	721	689	655	619	581	541	498	452	404	353	298	241	179	114	45	
2. amortization	T€/a	0	519	551	585	621	659	699	742	787	836	887	941	999	1.061	1.126	1.195	
annual debt service	T ∉ a	0	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	1.240	
status quo of loan at end of year	T€	0	11.688	11.137	10.552	9.932	9.273	8.574	7.832	7.045	6.209	5.322	4.380	3.381	2.320	1.195	0	
VI. cash flow after debt service (loan capital)																		
1. cash flow before debt service (loan capital)	T€/a	0	1.431	1.908	1.908	1.908	1.908	1.908	1.908	1.908	1.908	1.908	1.908	1.908	1.908	1.908	1.908	4
2. debt service (loan capital)	T€/a	0	-1.240	-1.240	-1.240	-1.240	-1.240	-1.240	-1.240	-1.240	-1.240	-1.240	-1.240	-1.240	-1.240	-1.240	-1.240	
cash flow after debt service (loan capital)	T ∉ a	0	191	668	668	668	668	668	668	668	668	668	668	668	668	668	668	4
VII. cash flow after debt service and interest of	n partne	r's Ioan																
cash flow after debt service (loan capital)	T€/a	0	191	668	668	668	668	668	668	668	668	668	668	668	668	668	668	4
2. interest on partner's loan	T€/a	0	-392	-523	-523	-523	-523	-523	-523	-523	-523	-523	-523	-523	-523	-523	-523	-13
cash flow after debt service and interest of	n T ∉ a	0	-201	145	145	145	145	145	145	145	145	145	145	145	145	145	145	3
VIII. growths in equity																		
investments per year	T€/a	0	-5.231	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2. cash flow after debt service (loan capital)	T€/a	0	191	668	668	668	668	668	668	668	668	668	668	668	668	668	668	4
growths in equity	T ∉ a	0	-5.041	668	668	668	668	668	668	668	668	668	668	668	668	668	668	4
growths in equity accumulated	T€	0	-5.041	-4.373	-3.705	-3.037	-2.369	-1.702	-1.034	-366	302	970	1.637	2.305	2.973	3.641	4.309	4.78
IX. internal rate of return																		
1. growths in equity	T€/a	0	-5.041	668	668	668	668	668	668	668	668	668	668	668	668	668	668	47

(from cash flow + interest on equity capital)

internal rate of return

10,0%

project: 1260_LI_Smethport sensitivity analysis

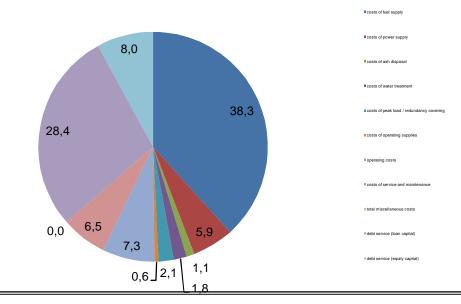
status quc 27. November 2009

alternative 3: steam boiler with condensing type turbine load point 1: dimensioning

project manager: Carsten Besser **telephone extensio** - 34

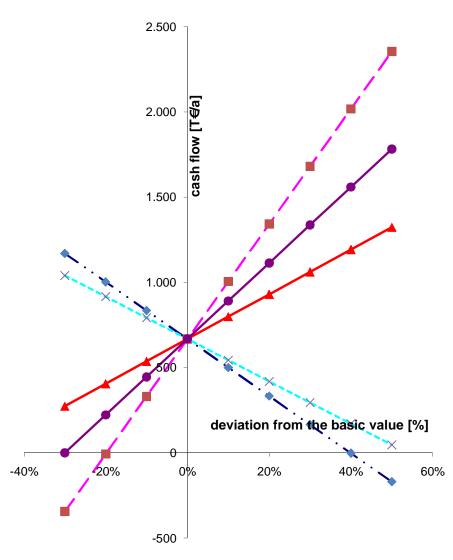
e-mail: cbe@seeger.ag

SEEGER ENGINEERING AG
Industriestr. 25-27
37235 Hessisch Lichtenau
Tel: 0 56 02 / 93 79 -0
Fax: 0 56 02 / 28 89
info@seeger.ag

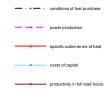


A. marginal costing	
a) heat output	32.725 MWh/a

specific costs of heat generation	[T ∉ a]	[∉ MWh]	[%]
a) costs of fuel supply	1.674	51,15	38,3
o) costs of power supply	256	7,82	5,9
c) costs of ash disposal	48	1,46	1,1
d) costs of water treatment	80	2,44	1,8
e) costs of peak load / redundancy covering	93	2,85	2,1
) costs of operating supplies	25	0,76	0,6
g) operating costs	320	9,78	7,3
n) costs of service and maintenance	282	8,63	6,5
) total miscellaneous costs	0	0,00	0,0
total operating costs	2.778	84,90	63,6
) debt service (loan capital)	1.240	37,89	28,4
debt service (equity capital)	349	10,66	8,0
costs of capital	1.589	48,55	36,4


marginal costing of heat generation	4.367	133,45	100
(without power feed-in)			
k) revenues from power feed-in	3.374	103,09	77
k) revenues from fuel saving	0	0,00	0
l) revenues from sale of green certificates	0	0,00	0
marginal costing of heat generation	993	30,35	23
(with power feed-in)			

Wesentliche spezifische Kosten der Wärmegestehung in %

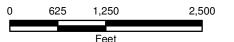


B. sensitivity analysis			cash flow a	after debt	service (lo	an capi	668 T	ea	(basic value)	
					pro	oductivity	in full loa	ad hours	,		
output parameter	unit	value ∅	-30%	-20%	-10%	0%	10%	20%	30%	40%	50%
conditions of fuel purchase	€ /MWh	23,33	1.170	1.003	835	668	500	333	166	-2	-169
power production	TMWh/a	39	-344	-7	330	668	1.005	1.343	1.680	2.017	2.355
specific sales terms of heat	€ /MWh	40,10	274	405	537	668	799	930	1.061	1.193	1.324
costs of capital	€/a	1.240	1.040	916	792	668	544	420	296	172	48
productivity in full load hours	h/a	8.000	-1	222	445	668	891	1.113	1.336	1.559	1.782

Sensitivity of the cash flow to the deviation of single parameters

The steeper the gradient of one single parameter, no matter if positive or negative, the more sensitive is the considered parameter to a deviation from the basic value.

Legend


SITE BOUNDARIES NATIONAL WETLAND INVENTORY

100-YR FEMA FLOOD ZONE

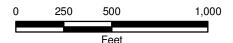
NOTE: 100-YR FEMA FLOOD ZONE BOUNDARY IS AN APPROXIMATION BASED OF A 1978 FLOOD INSURANCE RATE MAP AND IS LIKELY INCOMPLETE.

LAHMEYER INTERNATIONAL GmbH SMETHPORT, PENNSYLVANIA

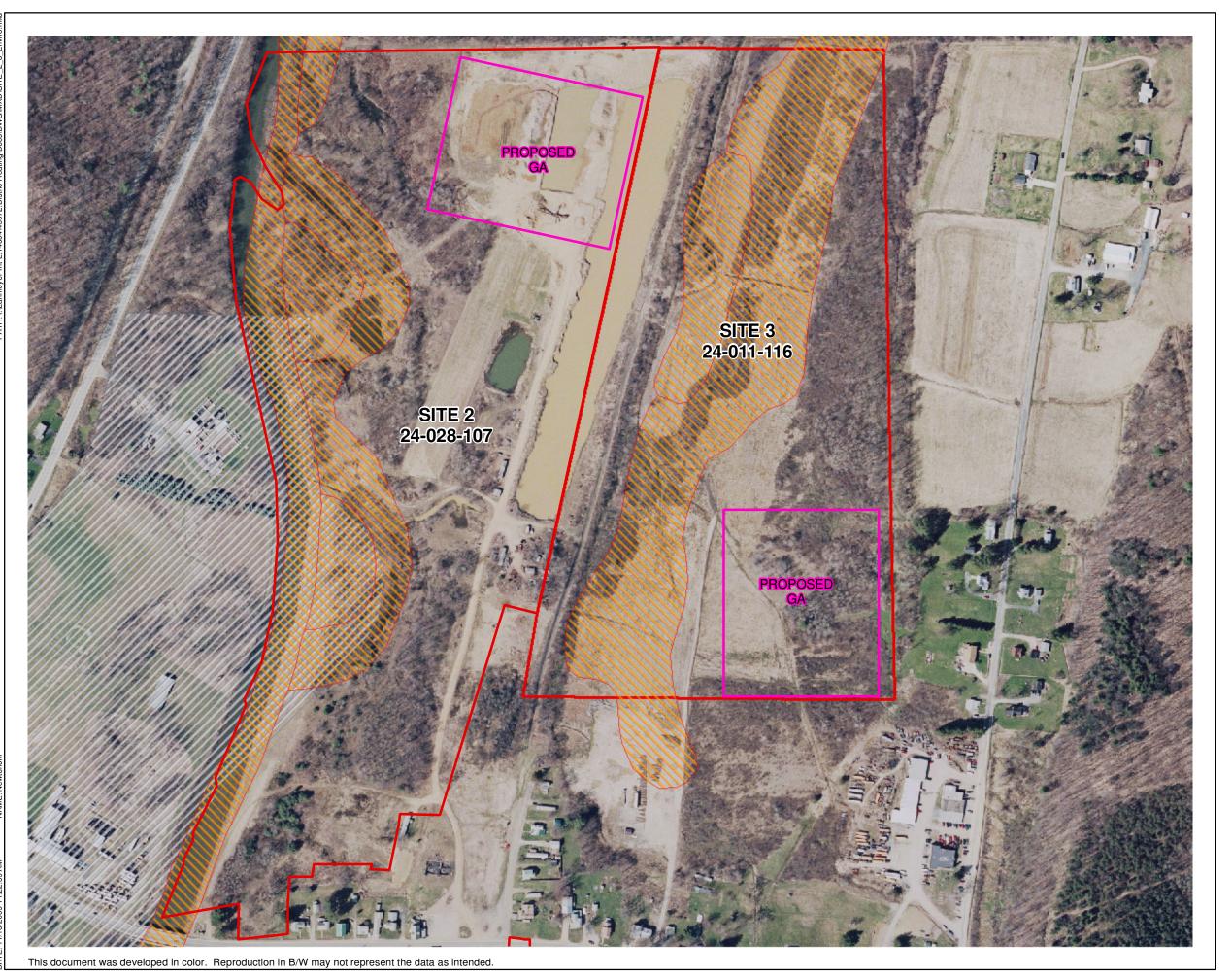
SITE LOCATION

Legend

SITE BOUNDARIES


NATIONAL WETLAND INVENTORY

100-YR FEMA FLOOD ZONE

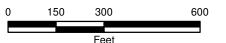

NOTE: 100-YR FEMA FLOOD ZONE BOUNDARY IS AN APPROXIMATION BASED OF A 1978 FLOOD INSURANCE RATE MAP AND IS LIKELY INCOMPLETE.

LAHMEYER INTERNATIONAL GmbH SMETHPORT, PENNSYLVANIA

SITE 1

Legend

SITE BOUNDARIES

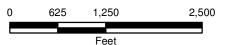

NATIONAL WETLAND INVENTORY

100-YR FEMA FLOOD ZONE

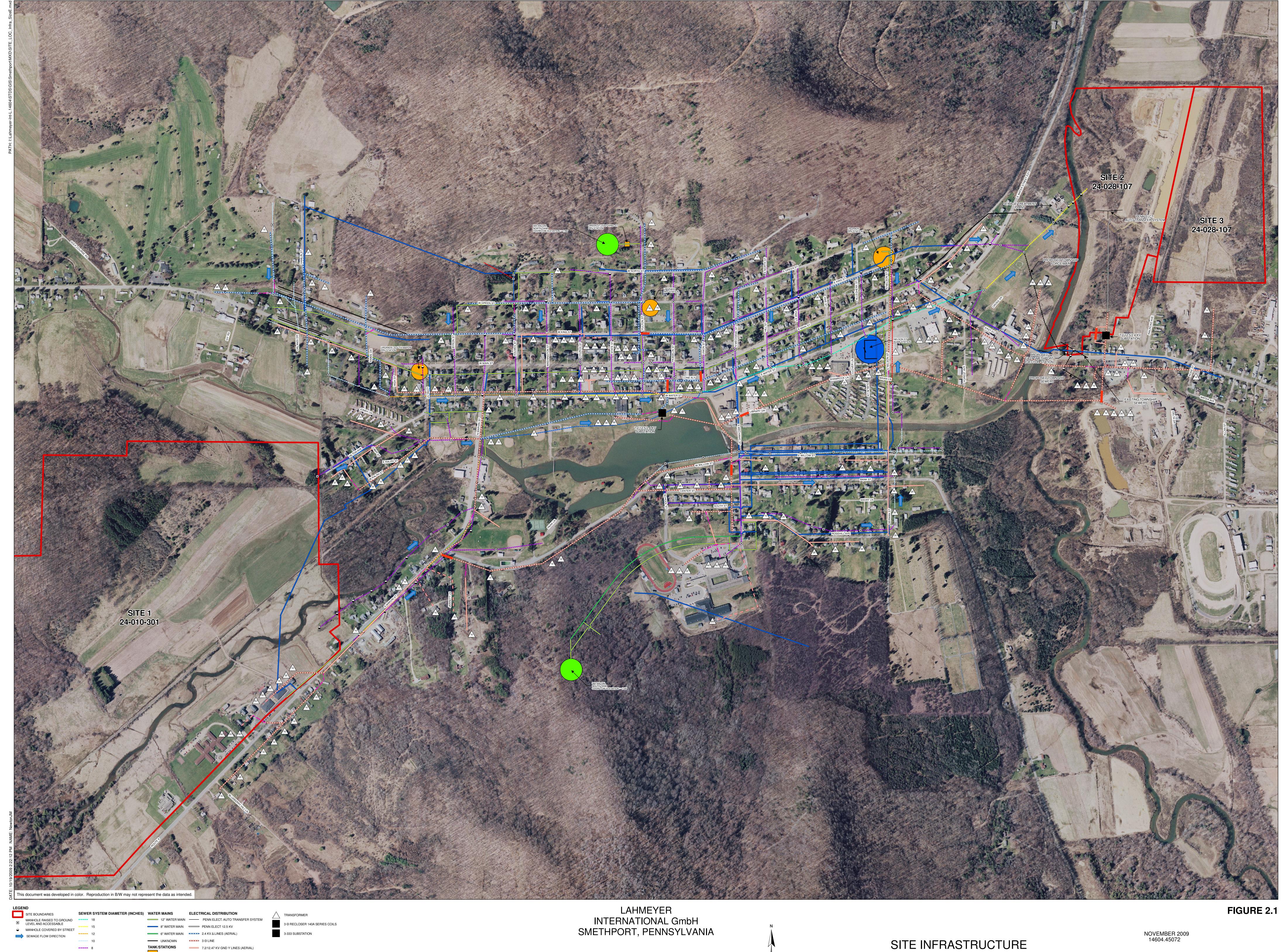
NOTE: 100-YR FEMA FLOOD ZONE BOUNDARY IS AN APPROXIMATION BASED OF A 1978 FLOOD INSURANCE RATE MAP AND IS LIKELY INCOMPLETE.

LAHMEYER INTERNATIONAL GmbH SMETHPORT, PENNSYLVANIA

SITE 2 AND 3

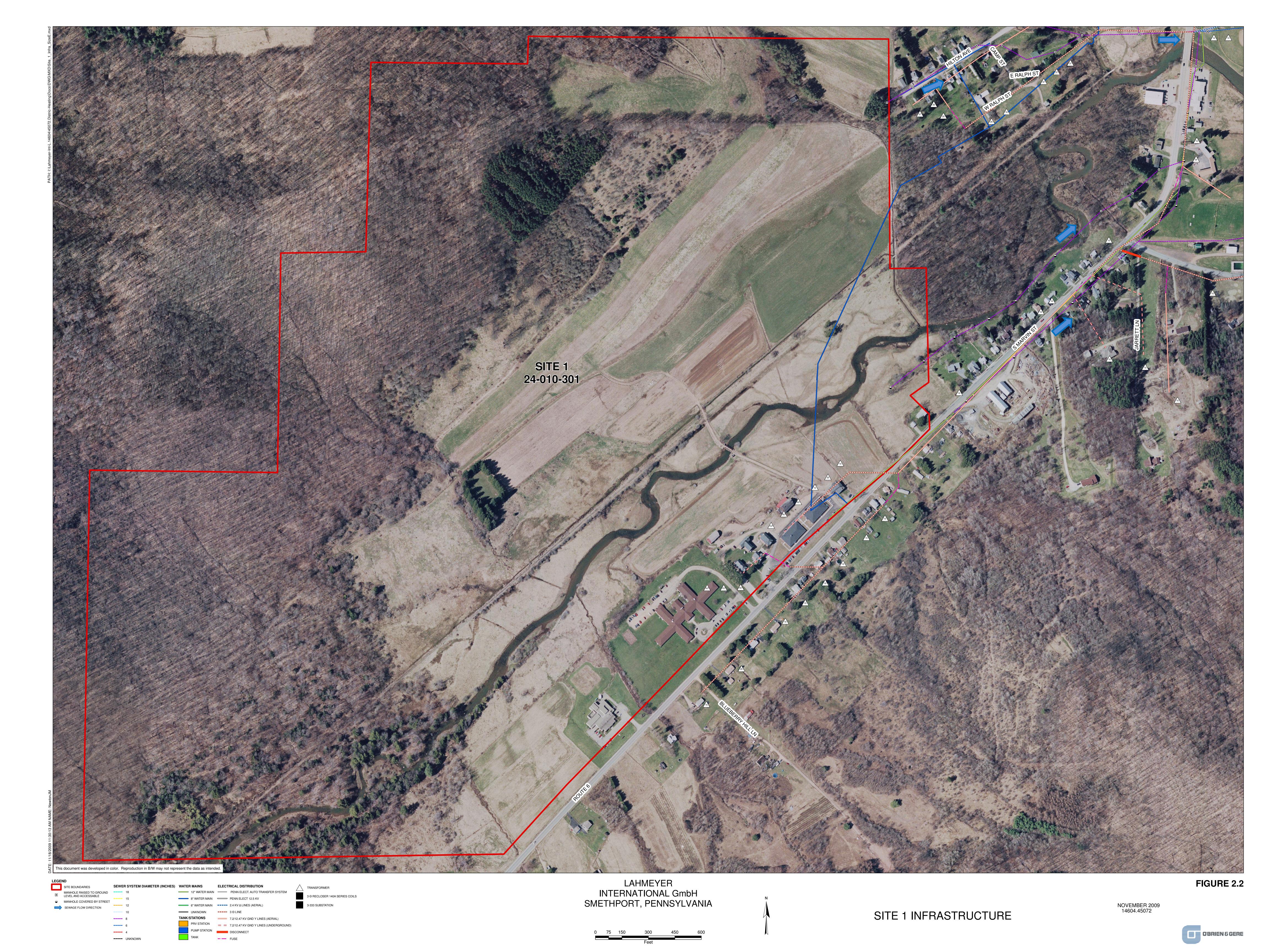


Legend


- ARCHAEOLOGICAL SURVEY
 - NHL ELIGIBLE
- NHL ELIGIBLE
- NHL INELIGIBLE
- Smethport_Portion_of_Keating_Parce

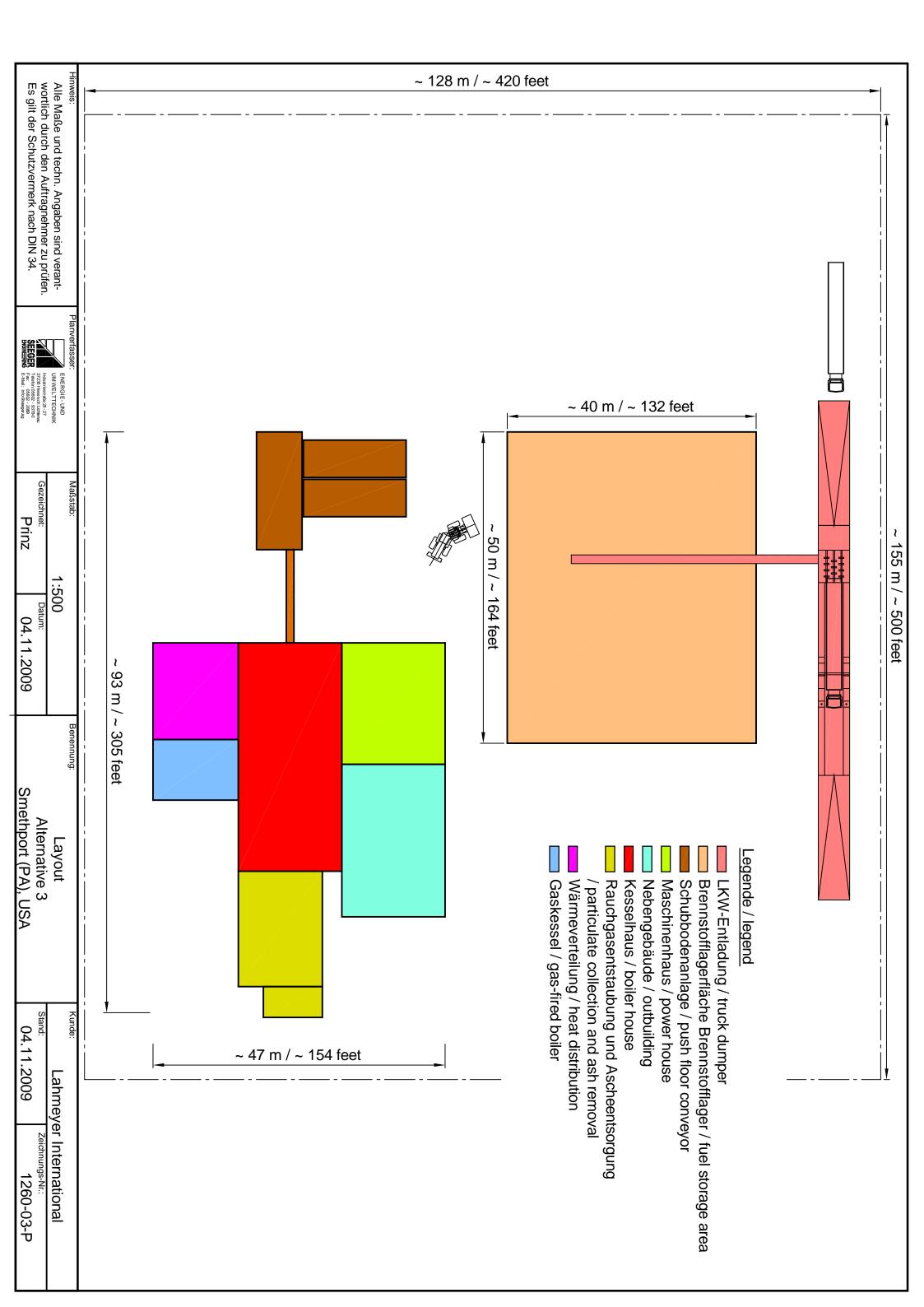
LAHMEYER INTERNATIONAL GmbH SMETHPORT, PENNSYLVANIA

HISTORIC AND ARCHAEOLOGICAL SITES



PRV STATION = 7.2/12.47 KV GND Y LINES (UNDERGROUND)

O'BRIEN & GERE



PRV STATION = = 7.2/12.47 KV GND Y LINES (UNDERGROUND)

O'BRIEN & GERE

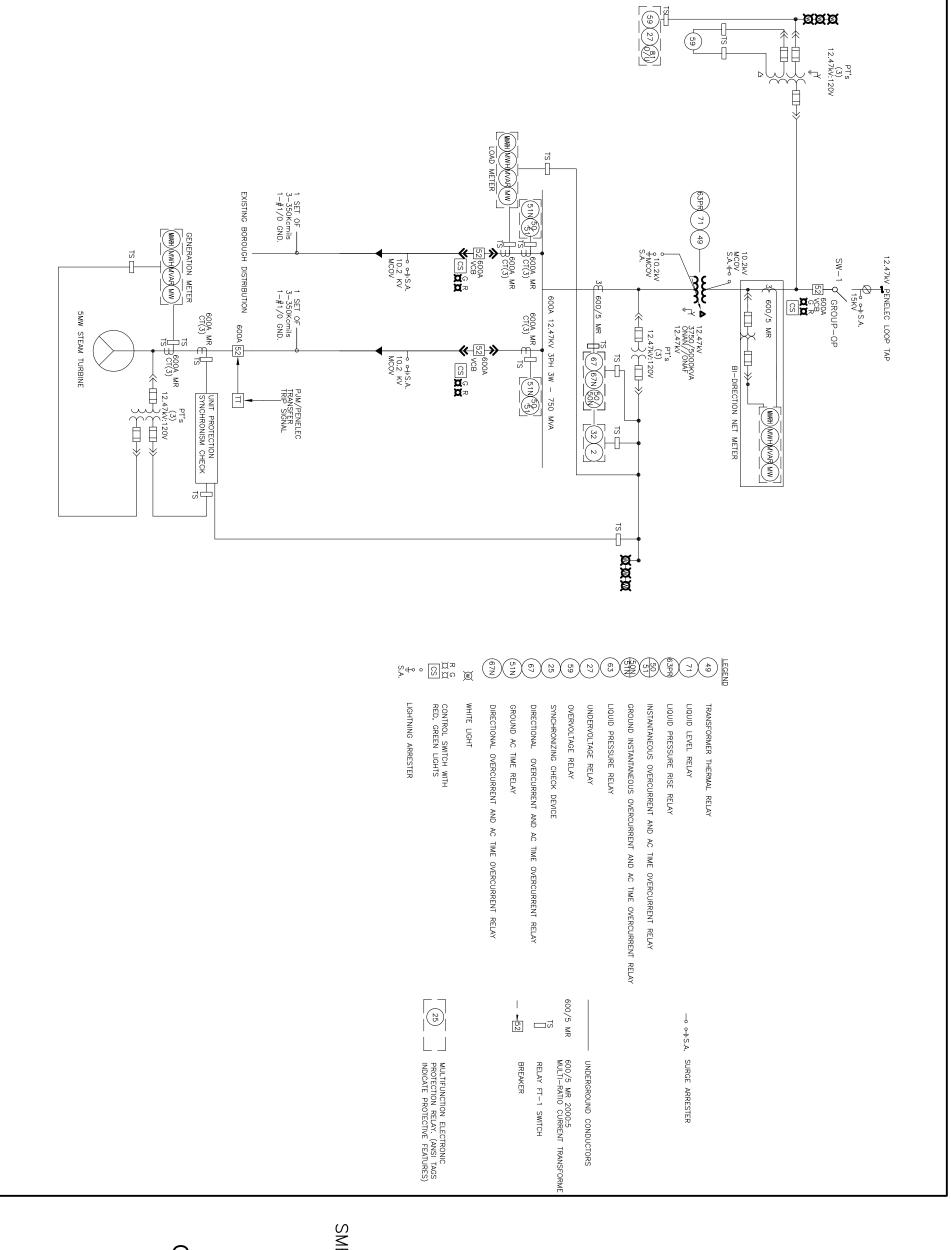


FIGURE 2

LAHMEYER INTERNATIONAL GMBH SMETHPORT, PENNSYLVANIA

CoGENERATION ONE-LINE DIAGRAM

NOVEMBER 2009 14604.45072 **OBRIEN 5 G**

Annex IV.A.5

Construction

		Quantity	Units	Unit Cost	Cost (\$ - USD)
3	Civil Engineering				
Α	Site clearing	6,00	acres	\$ 13.000,00	\$ 78.000,00
В	Road Development	200,00	feet	\$ 400,00	\$ 80.000,00
С	Paving	40.000,00	sf	\$ 8,00	\$ 320.000,00
D	Landscaping	1,00	acre	\$ 45.000,00	\$ 45.000,00
E	Site development, site lighting, rough grade, excavations	6,00	acres	\$ 17.000,00	\$ 102.000,00
F	Misc general conditions and mobilization/fees	1,00	each	\$ 250.000,00	\$ 250.000,00
G	Fencing	2.000,00	feet	\$ 25,00	\$ 50.000,00
	Utilities				
G	Water piping to building (8")	200,00	feet	\$ 225,00	\$ 45.000,00
Н	WW Piping (12")	200,00	feet	\$ 175,00	\$ 35.000,00
1	Natural gas piping (4")	200,00	feet	\$ 175,00	\$ 35.000,00
J	Electrical interconnection/transformers	1,00	each	\$ 485.360,00	\$ 485.360,00
K	Storm water system	1,00	each	\$ 250.000,00	\$ 250.000,00
					\$ -
				Sub-Totals	\$ 1.775.360,00
	O'Brien & Gere Design and Construction Management Services				
L	(10% of construction costs)				\$ 177.536,00
М	Contingency Allowance (10% of construction costs)				\$ 177.536,00
				Totals	\$ 2.130.432,00

Annex IV.A.6-A

Potential Right-to-Build Permits, Approvals and Reviews

SMETHPORT, PA DISTRICT HEATING POTENTIAL RIGHT-TO-BUILD PERMITS, APPROVALS & REVIEWS

	Permit	Activity	Agency	Regulatory Review Timeframes	Si A = App	Site Applicability / = Applicable Permit/Review A = Activity-Specific S = Site-Specific	ty Review fic
					Site 1	Site 2	Site 3
	Federal						
-	Section 404 of the Clean Water Act (Joint Application)	Work within waters of the United States (including non-isolated wetlands; delineation required for application). Nationwide Permits vs. Project-Specific Permit.	USACE	180-days (Pre-Construction)		(S) /	
. 2	National Environmental Policy Act (NEPA)	Environmental impact assessment of federally- approved and/or funded programs.	Multiple (funding)	Coordinated with federal reviewing agency.	✓ (A/S)	✓ (A/S)	✓ (A/S)
	<u>Commonwealth</u>						
ო	Section 401 of the Clean Water Act (401 Water Quality Certification)	Certification is used to ensure that federal agencies issuing permits or carrying out direct actions, which may result in a discharge to waters of the United States do not violate Commonwealth water quality standards or impair designated uses.	PADEP	Concurrent with other PADEP permit processing, and in conjunction with issuance of federal permit.		√(S)	
4	Water Obstruction & Encroachment General Permits or Project Specific Permit or Environmental Assessments for Waived Activities for Water Obstruction & Encroachment (25 PA Code Chapters 105, 106)	Persons planning to construct, operate, maintain, or enlarge any water obstruction or encroachment that will affect a waterway, its 100-year floodway or any lake, pond, reservoir, or wetland must obtain a PADEP permit. (Includes work within 50-feet of a stream, waterway or wetland.) Activities located on submerged lands of the Commonwealth will also require a Submerged Lands License Agreement. Wetland replacement may be required. (See also USACE Section 404 Permit requirements.)	Local County Conservation District or PADEP (Regional Solis & Waterways Section)	General Permit Administrative Completeness – 20-days Response to Deficiency Letter – 30-days Technical Review 1 – 40-days Technical Review 2 (if needed) – 0-days Final Decision – 0-days Written Public Comment Period – Act 14 Municipal Notification. Project Specific Permit or EA Administrative Completeness – 20-days Response to Deficiency Letter – 30-days Technical Review 1 – 60-days Technical Review 2 (if needed) – 25-days Final Decision – 25-days Written Public Comment Period – Act 14 Municipal Notification.		(S)	

SMETHPORT, PA DISTRICT HEATING POTENTIAL RIGHT-TO-BUILD PERMITS, APPROVALS & REVIEWS

	Permit	Activity	Agency	Regulatory Review Timeframes	S A = App	Site Applicability / = Applicable Permit/Review A = Activity-Specific S = Site-Specific	ty Review fic
					Site 1	Site 2	Site 3
5	Air Quality Plan Approval/Operating Permit (Title V or State Only Permit) (25 PA Code 127)	Permit to construct and operate an air emission source.	PADEP (Regional Air Quality Program)	90 to 180-days (Pre-Construction)	(A) /	((A)	(A) /
9	Storage Tank Registration & Permitting (25 PA Code Chapter 245)	Anyone wishing to operate a new or existing regulated storage tank must register that tank with PADEP prior to operating the tank. Once a storage tank is registered, the tank is deemed to be permitted, unless the applicant is notified otherwise by the Department, with either a Permit-By-Rule or a General Permit (including construction-related). May require sitespecific installation permit. SPR and/or SPCC Plan may be necessary depending upon quantities.	PADEP (Division of Storage Tanks)	Administrative Completeness – 20-days Response to Deficiency Letter – 30-days Technical Review 1 – 70-days Technical Review 2 (if needed) – 0-days Final Decision – 0-days Written Public Comment Period – Not Applicable	✓(A)	/(A)	(A) /
2	NPDES Individual Permit for Storm Water Discharges Associated With Construction Activities or NPDES General Permit (PAG- 02) or Erosion & Sediment Control Permit (25 PA Code Chapters 92, 93, 102)	Storm water discharges from construction phase activities disturbing five-acre or greater. Requires development, implementation and maintenance of erosion control measures and facilities that are set forth in an erosion and sedimentation control plan.	Local County Conservation District or PADEP (Regional Soils & Waterways Section)	Administrative Completeness – 20-days Response to Deficiency Letter – 30-days Technical Review 1 – 66-days Technical Review 2 (if needed) – 32-days Final Decision – 32-days Written Public Comment Period – Requires municipal notification.	√ (A)	/(A)	(∀) /
ω	NPDES General Permit (PAG-03) for Discharge of Storm Water Associated With Industrial Activities (25 PA Code Chapters 91 – 105)	Discharge of storm water from new or existing point sources associated with industrial activities.	PADEP (Regional Water Quality Permitting Section)	Administrative Completeness – 20-days Response to Deficiency Letter – 30-days Technical Review 1 – 60-days Technical Review 2 (if needed) – 0-days Final Decision – 0-days Written Public Comment Period – Public	(A) >	⟨A)	(A) >

SMETHPORT, PA DISTRICT HEATING POTENTIAL RIGHT-TO-BUILD PERMITS, APPROVALS & REVIEWS

	Permit	Activity	Agency	Regulatory Review Timeframes	Sit	Site Applicability / = Applicable Permit/Review A = Activity-Specific S = Site-Specific	y Review ic
					Site 1	Site 2	Site 3
				notice of every final action is published by PADEP in Pennsylvania Bulletin.			
თ	NPDES New and Existing Sewage Discharger, Short Form; NPDES Part I Permit (25 PA Code Chapters 91 – 105)	Discharge of industrial wastewater and storm water to surface waters (dry swale, rivers, streams, lakes), ground water, or an existing sanitary sewer system or storm water system.	PADEP (Regional Water Quality Permitting Section)	Administrative Completeness – 20-days Response to Deficiency Letter – 30-days Technical Review 1 – 60-days Technical Review 2 (if needed) – 30-days Final Decision – 90-days Written Public Comment Period – Required municipal notification. Public notice of every final action is Dullished by PADEP in	(A) >	(A) >	(A) >
10	Act 537 Sewage Facilities Planning (25 PA Code Chapter 71)	Approval of wastewater facility designs (including pre-treatment facility); discharges to sanitary sewer.	Local Municipality; County Planning Agency; County Health Dept.; PADEP (Regional Water Quality Permitting Section)	Administrative Completeness – 14-days Technical Review 1 – 30-days Technical Review 2 (if needed) – 0-days Final Decision – 0-days Written Public Comment Period – Not Applicable	√ (A)	✓ (A)	√(A)
F	Residual Waste General Permits Beneficial Use	Residual waste general permits may be issued on a regional or statewide basis for a category of processing and/or beneficial use of residual waste. Wastes must be similar physically and chemically and must be used and processed in a similar fashion. Persons may be authorized to operate under an existing general permit via a registration or determination of applicability.	PADEP Bureau of Waste Management	Administrative Completeness – 0-days Technical Review 1 – 30-60-days Technical Review 2 (if needed) – 0-days Final Decision – 0-days	/(A)	✓ (A)	✓ (A)
12	Environmental Assessment (PA Code § 271.127)	Environmental assessment in a permit application shall include at a minimum a detailed analysis of	PADEP	Concurrent with PADEP permit review process.	✓ (A/S)	✓ (A/S)	✓ (A/S)

SMETHPORT, PA DISTRICT HEATING POTENTIAL RIGHT-TO-BUILD PERMITS, APPROVALS & REVIEWS

				<u>.</u>	Site Applicability	A:
 Permit	Activity	Agency	Regulatory Review Timeframes	A = >	= Applicable Permit/Review A = Activity-Specific S = Site-Specific	Review fic S
				Site 1	Site 2	Site 3
	the potential impact of the					
	proposed facility on the					
	environment, public health and					
	public safety, including traffic,					
	aesthetics, air quality, water					
	quality, stream flow, fish and					
	wildlife, plants, aquatic habitat,					
	threatened or endangered					
	species, water uses, land use					
	and municipal waste plans. The					
	applicant shall consider features					
	such as scenic rivers,					
	recreational river corridors, local					
	parks, State and Federal forests					
	and parks, the Appalachian Trail,					
	historic and archaeological sites,					
	National wildlife refuges, State					
	natural areas, National					
	landmarks, farmland, wetland,					
	special protection watersheds					
	designated under Chapter 93					
	(relating to water quality					
	standards), airports, public water					
	supplies and other features					
	deemed appropriate by the					
	Department or the applicant. The					
	permit application shall also					
	include all correspondence					
	received by the applicant from					
	any State or Federal agency					
	contacted as part of the					
	environmental assessment.					
	Federal funding/permits may					
	require NEPA review.					

SMETHPORT, PA DISTRICT HEATING POTENTIAL RIGHT-TO-BUILD PERMITS, APPROVALS & REVIEWS

	Permit	Activity	Agency	Regulatory Review Timeframes	Sit	e A lica Act	y Review fic
					Site 1	Site 2	Site 3
13	PA Historical & Museum Commission (PHMC) Cultural Resource Notice	Unless exempt as specified in the PADEP PHMC Policy "List of Exemptions", if more than 10 acres are disturbed, it is the applicant's responsibility to notify the PA Historical & Museum Commission – Bureau of Historic Preservation to assess potential impacts on significant historical and archaeological resources.	PA Historical & Museum Commission – Bureau of Historic Preservation	Concurrent with PADEP permit review process.	✓ (A/S)	✓ (A/S)	√ (A∕S)
41	PA Natural Diversity Inventory (PNDI)	Coordination effort to facilitate avoidance and minimization of impacts to endangered and threatened and special concern species and resources, etc. in the Commonwealth of Pennsylvania.	PADEP	Concurrent with PADEP permit review process.	√(S)	(S) /	/(S)
15	Highway Work Permit	Work within highway rights-of- way (highway and utility improvements), including driveway cuts.	Highway Jurisdiction	30 to 90-days (Pre-Construction)	/(S)	(S) /	/(S)
	<u>Local</u>					27	
16	Floodplain Development Permit	Work within 100-year floodplain.	Local County Conservation District or PADEP (Regional Soils & Waterways Section)	[1] (Pre-Construction)		/(S)	
17	Rezone	Rezone to allow proposed land use (if necessary) (See also PA Land Use Policy)	Municipal Board	30 to 90-days (3 meetings or < - typical) (Pre-Construction)	[](A)	[](A)	[](A)
18	Site Plan Approval	Approval of site modifications. (May not be necessary if no major site modifications [i.e., Building Permit only] – coordinate with municipal Code Enforcement Officer to identify process). (See also PA Land Use	Municipal Planning Board	120-days (typical) 3 meetings (typical) – Sketch Plan, Preliminary Plan, Final Plan (Pre-Construction)	✓ (A)	√ (A)	✓(A)

POTENTIAL RIGHT-TO-BUILD PERMITS, APPROVALS & REVIEWS SMETHPORT, PA DISTRICT HEATING

	Permit	Activity	Agency	Regulatory Review Timeframes	Si A = Apr S	Site Applicability = Applicable Permit/Review A = Activity-Specific S = Site-Specific	ty /Review ific c
					Site 1	Site 2	Site 3
		Policy)					
6	Subdivision Approval	Consolidation or breakout of parcels. (See also PA Land Use Policy)	Municipal Planning Board	30 to 90-days (3 meetings or < - typical) (Pre-Construction)	√ (A)	(Y) 🖍	See Note 14
20	Variances	Approval of area (i.e., encroachment on setbacks) and/or use variances.	Municipality (ZBA)	1 or 2 meetings (typical) (Pre-Construction)	[](A/S)	[](A/S)	[](A/S)
21	Industrial Wastewater Discharge Permit (Local Sewer Use Ordinance & Federal Pretreatment Regulations)	Approval of additional sanitary and process waste discharges to POTW. Also includes approval of pre-treatment program.	Municipality, USEPA	Coordinated with POTW.	[](A)	[](A)	[](A)
22	Building Permit	Building code compliance.	Local Code Enforcement Office	Coordinated with local code enforcement officer/building inspector.	✓ (A)	✓ (A)	✓ (A)
23	Certificate of Occupancy	Approval to occupy building.	Local Code Enforcement Office	Coordinated with local code enforcement officer/building inspector.	✓ (A)	✓ (A)	✓ (A)

Acronyms EA – Environmental Assessment

GP - General Permit

NEPA - National Environmental Policy Act

NPDES - National Pollutant Discharge Elimination System

PA – Pennsylvania

PADEP - Pennsylvania Department of Environmental Protection PNDI - Pennsylvania Natural Diversity Inventory

PHMC - Pennsylvania Historic and Museum Commission

POTW – Publicly-Owned Treatment Works SPCC – Spill Prevention, Control and Countermeasure

SPR – Spill Prevention Report SWPPP – Storm Water Pollution Prevention Plan

USACE – United States Army Corps of Engineers USEPA – United States Environmental Protection Agency ZBA – Zoning Board of Appeals

Notes/Assumptions

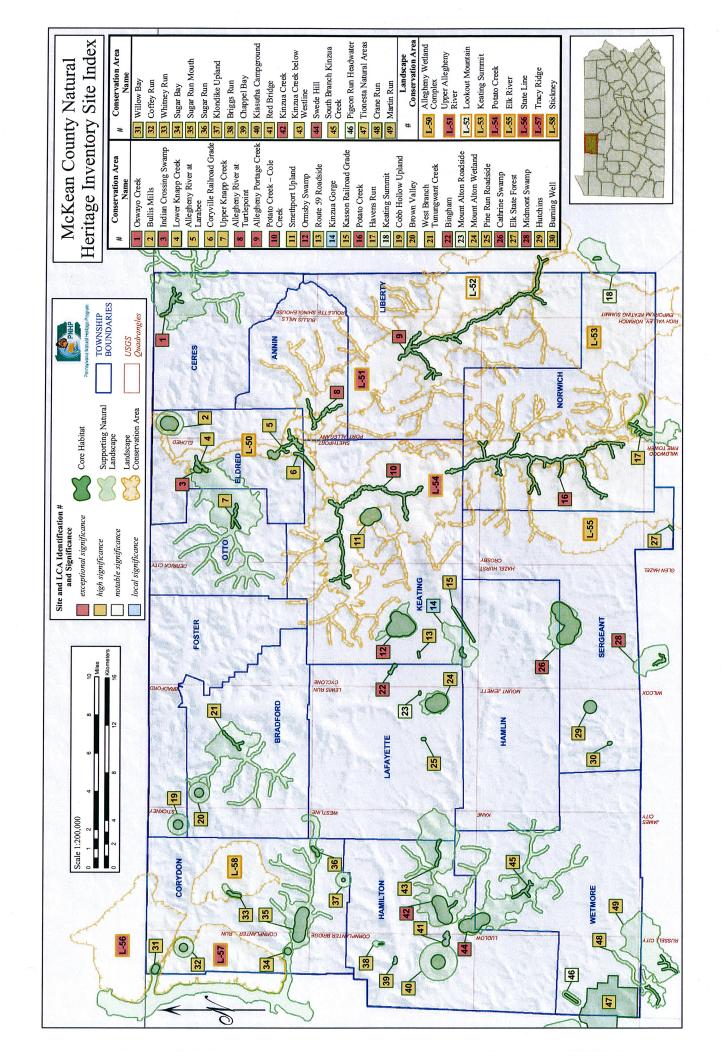
- Typical timeframes (actual timeframes may differ).
- Source: Guide to DEP Permits & Other Authorizations (http://www.elibrary.dep.state.pa.us/dsweb/Get/Document-66255/4000-BK-DEP0341.pdf).

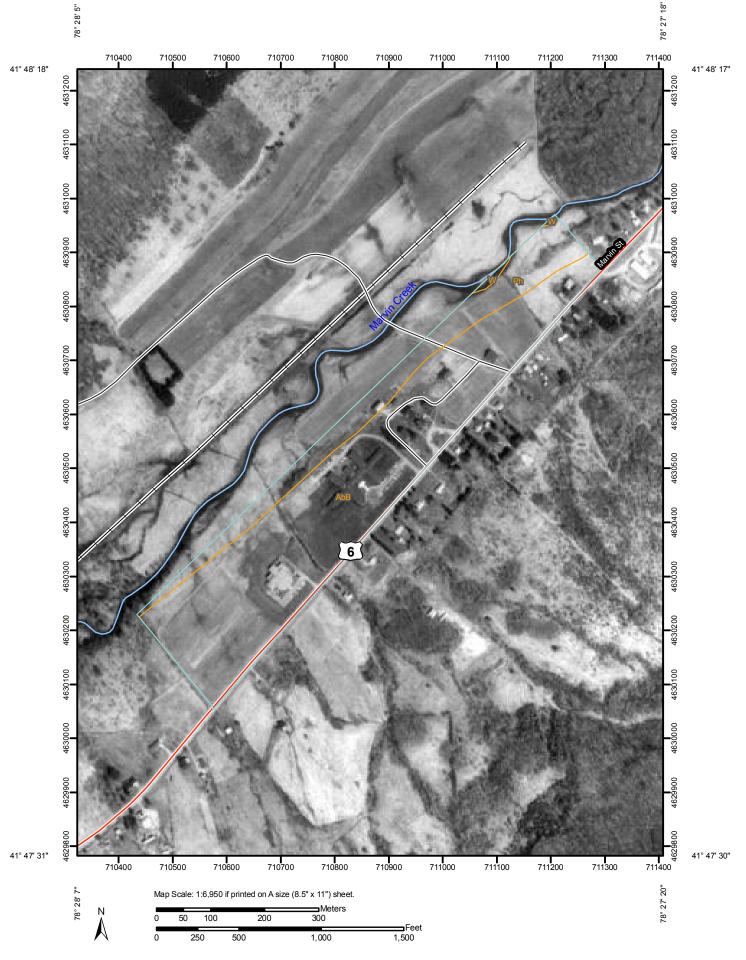
POTENTIAL RIGHT-TO-BUILD PERMITS, APPROVALS & REVIEWS SMETHPORT, PA DISTRICT HEATING

- Adequate water supply; sewer and POTW capacity; wastewater discharges to POTW (vs. environment).
 - Use of greenfield sites.
- Public notice of every final action is published by PADEP in Pennsylvania Bulletin.
- Municipal notification refers to Act 14 requirements.
- Policy for Consideration of Local Comprehensive Plans and Zoning Ordinances in DEP Review of Permits for Facilities and Infrastructure (i.e., Land Use Policy)
 - Policy for Pennsylvania Natural Diversity Inventory (PNDI) Coordination during Permit Review and Evaluation (i.e., PNDI Policy)
- Implementation of the Pennsylvania State History Code: Policy and Procedures for Applicants for DEP Permits and Plans Approvals' Policy (i.e., PHMC Policy)
 - Permit Coordination Policy
- Environmental Justice issues may apply.
- Project is not located within Susquehanna River Basin and does not require consultation with Susquehanna River Basin Commission (i.e., Consumptive Water Use).

 PADEP application packages may include: General Information Form (GIF), Program Specific Authorization Application Forms, Cultural Resource Notice, Environmental Assessment, and other required documents.
 - Site No. 3 does not meet the minimum specified size requirement. Site Nos. 1 and 2 are larger than the specified minimum size, and may be subdivided to create a sufficient developable parcel. 4.

Annex IV.A.6-B Natural Heritage Sites




Table 1. Natural Heritage Areas categorized by significance. The results of the Natural Heritage Inventory are summarized below in both graphic and tabular form. Figure 1 shows the spatial distribution of Natural Heritage Areas across the county. Table 1 summarizes the Natural Heritage Areas, in order of their ecological significance. Significance ranks are Exceptional, High, Notable, and County (for a full explanation of these ranks, see Table 4 on pg. 33).

Site	Municipality	Description	Page
Exceptional Significance			
Allegheny Portage Creek CA	Liberty Township	Aquatic habitat occupied by one fish and two mussel species and sensitive species of concern 1, 2, and 3.	119
Allegheny River at Turtlepoint CA	Annin Township	Stream habitat that supports one fish and two mussel species of conservation concern and sensitive species of concern 2, 3, and 5.	49
Bingham CA	Keating Township, Lafayette Township	Disturbed habitat and adjacent wetland that serve as habitat for three plant species of concern.	101, 111
Cathrine Swamp CA	Hamlin Township, Sergeant Township	Wetland complex serving as habitat for two plant, six dragonfly, and 1 butterfly species of special concern.	95, 135
Indian Crossing Swamp CA	Eldred Township	Wetland complex with globally rare black ash - balsam fir swamp natural community providing habitat for two plants species, Wilson's snipe, and sensitive species of concern 8.	77
Kinzua Creek CA	Hamilton Township, Wetmore Township	Section of Kinzua Creek and riparian forest providing habitat for American brook lamprey and six species of river odonates.	89, 143
Midmont Swamp CA	Sergeant Township, Jones Township, Elk County	Beaver-influenced wetland complex supporting hemlock palustrine forest, Wiegand's sedge, bog sedge, creeping snowberry, northern Harrier, and sensitive species of concern 9.	138
Ormsby Swamp CA	Keating Township	Wetland complex serving as habitat for two plant, seven dragonfly, and six butterfly species of special concern and sensitive species of concern 11.	104
Oswayo Creek CA	Ceres Township	Stream habitat supporting populations of Ohio lamprey and three mussel species of special concern.	61
Potato Creek CA	Keating Township, Norwich Township,	Section of upper Potato Creek and its tributaries support American brook lamprey and Ohio lamprey and sensitive species of concern 2 and 3.	103, 125
Potato Creek at Farmers Valley CA	Keating Township,	Section of lower Potato Creek and its tributaries support American brook lamprey, three mussel species of concern, and sensitive species of concern 2, 3, and 5.	103
Potato Creek LCA	Foster Township, Keating Township, Liberty Township, Norwich Township, Otto Township, Sergeant Township	Section of Potato Creek, its tributaries, and supporting riparian corridors that encompass a number of smaller-scale aquatic Conservation Areas.	42
State Line LCA	Corydon Township, Warren County, New York State	Landscape encompassing nearly 12,500 acres of highly contiguous forest.	43
Swede Hill CA	Hamilton Township, Wetmore Township	Section of South Branch Kinzua Creek and riparian forest that serves as habitat for three species of river-breeding odonates.	143
Tracy Ridge LCA	Corydon Township, Warren County	Landscape encompassing nearly 9,800 acres of highly contiguous forest.	43

Table 1. Natural Heritage Areas categorized by significance (cont.).

Site	Municipality	Description Description	Page No.
Exceptional Significance	(cont.)		No.
Upper Allegheny River LCA	Annin Township, Eldred Township, Keating Township, Liberty Township, Norwich Township, Potter County	Sections of Allegheny Portage Creek, Allegheny River, their tributaries, and supporting riparian corridors that encompass a number of smaller-scale aquatic Conservation Areas.	42
High Significance			
Allegheny River at Larabee CA	Eldred Township	Stream habitat that supports elktoe mussel, blue-tipped dancer dragonfly, and long dash butterfly, all species of special concern.	75
Allegheny Wetland Complex LCA	Annin Township, Eldred Township, Keating Township,	Landscape encompassing a wetland complex along the Allegheny River greater than 6,000 acres.	41
Briggs Run CA	Hamilton Township	Small stream supporting a population of great-spurred violet.	87
Brown Valley CA	Bradford Township	Mixed hemlock - hardwood riparian forest that supports a breeding pair of Swainson's thrush.	55
Bullis Mills CA	Eldred Township	Riparian wetland habitat occupied by a nesting pair of Wilson's snipe and sensitive species of concern 7.	76
Burning Well CA	Sergeant Township	Seepy valley head occupied by a small stand of balsam poplar, a critically imperiled plant species in Pennsylvania.	135
Chappel Bay CA	Hamilton Township	Shoreline along reservoir serving as habitat for thread rush, a state-rare plant species.	87
Cobb Hollow Upland CA	Bradford Township, Foster Township	Upland forest that supports a breeding pair of Swainson's thrush.	56, 83
Coffey Run CA	Corydon Township	Hemlock-dominated forest along Coffey Run that supports a breeding pair of Swainson's thrush, a species of conservation concern in PA.	67
Coryville Railroad Grade CA	Eldred Township, Keating Township	Marshy habitat along an active railroad grade that supports a relatively large population of stalked bulrush, a critically imperiled plant in Pennsylvania.	77, 102
Crane Run CA	Wetmore Township, Elk County	Aquatic habitat for American brook lamprey and ocellated darner dragonfly, both species of conservation concern.	143
Elk River LCA	Norwich Township, Sergeant Township Elk County	Landscape encompassing over 35,000 acres of contiguous forest.	43
Elk State Forest CA	Sergeant Township	Section of abandoned railroad grade serving as habitat for Case's Ladies'-tresses, a critically imperiled orchid species in PA.	137
Havens Run CA	Norwich Township	Section of stream that provides habitat for American brook lamprey, a fish species of special concern.	125
Hutchins CA	Sergeant Township	Upland forest habitat supporting sensitive species of concern 4.	137
Kasson Railroad Grade CA	Hamlin Township, Keating Township	Open habitat along railroad grade supporting a population of Case's ladies'-tresses, a critically imperiled orchid species.	96, 101
Keating Summit LCA	Liberty Township, Norwich Township, Elk County, Potter County	Landscape encompassing an area of contiguous forest greater than 18,200 acres.	43

Annex IV.A.6-C1.
Site 1 Soil Map

MAP LEGEND

Area of Interest (AOI)

Area o

Area of Interest (AOI)

Soils

Soil Map Units

Special Point Features

Blowout

■ Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

.. Gravelly Spot

Landfill

ل Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Rock Outcrop

Perennial Water

•

+ Saline Spot

"." Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot

Other

Special Line Features

λ G

Gully

Short Steep Slope

Other

Political Features

0

Water Features

Oceans

Cities

~

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

MAP INFORMATION

Map Scale: 1:6,950 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:20,000.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 17N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: McKean County, Pennsylvania Survey Area Data: Version 5, Jul 31, 2009

Date(s) aerial images were photographed: 4/8/1993

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

	McKean County, Pennsylv	ania (PA083)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AbB	Albrights silt loam, 3 to 8 percent slopes	37.2	78.5%
Ph	Philo silt loam	9.9	21.0%
W	Water	0.3	0.6%
Totals for Area of Interest		47.4	100.0%

Annex IV.A.6-C2.
Site 1 Soil Data

Map Unit Description

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Additional information about the map units described in this report is available in other soil reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the soil reports define some of the properties included in the map unit descriptions.

McKean County, Pennsylvania

AbB—Albrights silt loam, 3 to 8 percent slopes

Map Unit Setting

Elevation: 500 to 1,500 feet

Mean annual precipitation: 35 to 51 inches

Mean annual air temperature: 41 to 62 degrees F

Frost-free period: 115 to 165 days

Map Unit Composition

Albrights and similar soils: 85 percent Minor components: 5 percent

Description of Albrights

Setting

Landform: Mountain slopes

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Mountainbase

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Residuum weathered from acid, red siltstone,

sandstone, and shale

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: 18 to 32 inches to fragipan

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)

Depth to water table: About 12 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 2.7 inches)

Interpretive groups

Land capability (nonirrigated): 2e

Typical profile

0 to 8 inches: Silt loam

8 to 19 inches: Gravelly silt loam 19 to 70 inches: Channery clay loam

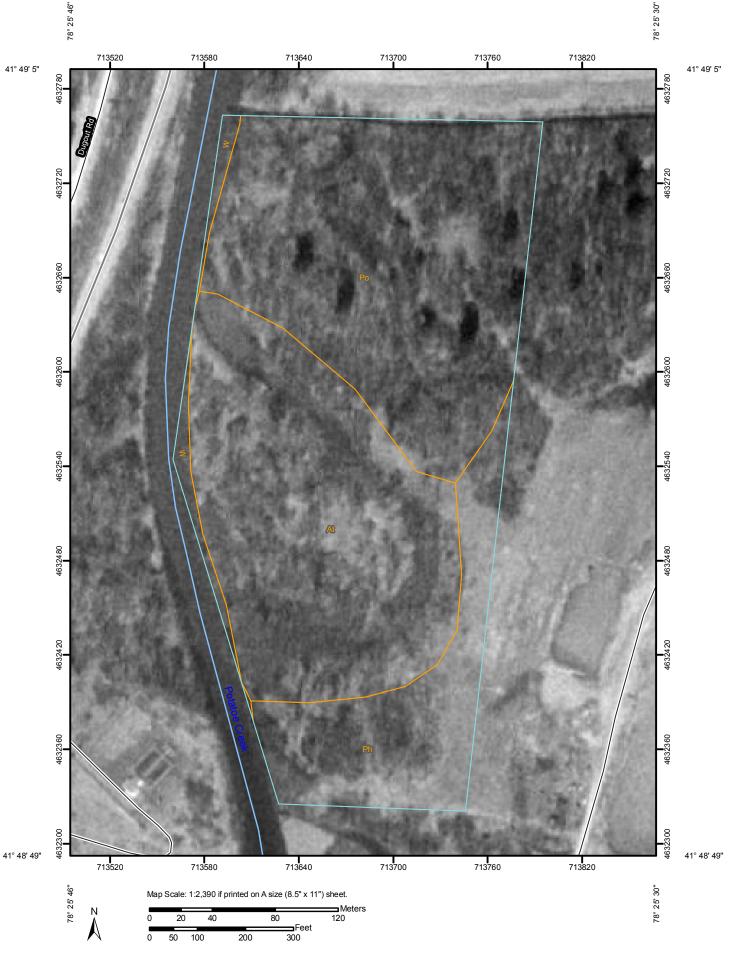
Minor Components

Brinkerton

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope


Down-slope shape: Concave Across-slope shape: Concave

Data Source Information

Soil Survey Area: McKean County, Pennsylvania

Survey Area Data: Version 5, Jul 31, 2009

Annex IV.A.6-C3.
Site 2 Soil Map

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Units

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

.. Gravelly Spot

Landfill

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Rock Outcrop

Perennial Water

*

+ Saline Spot

"." Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Spoil Area

Stony Spot

~ \

Very Stony Spot

Wet Spot

Other

Special Line Features

 \sim

Gully

Short Steep Slope

Other

Political Features

0

Cities

Water Features

Oceans

~

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

MAP INFORMATION

Map Scale: 1:2,390 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:20,000.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov

Coordinate System: UTM Zone 17N NAD83

This product is generated from the USDA-NRCS certified data as of

the version date(s) listed below.

Soil Survey Area: McKean County, Pennsylvania Survey Area Data: Version 5, Jul 31, 2009

Date(s) aerial images were photographed: 4/8/1993

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

	McKean County, P	ennsylvania (PA083)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
At	Atkins silt loam	7.8	38.9%
Ph	Philo silt loam	3.3	16.6%
Ро	Pope loam	8.5	42.4%
W	Water	0.4	2.1%
Totals for Area of Interest		20.1	100.0%

Annex IV.A.6-C4.
Site 2 Soil Data

Map Unit Description

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Additional information about the map units described in this report is available in other soil reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the soil reports define some of the properties included in the map unit descriptions.

McKean County, Pennsylvania

At—Atkins silt loam

Map Unit Setting

Elevation: 1,500 to 2,500 feet

Mean annual precipitation: 38 to 46 inches Mean annual air temperature: 46 to 57 degrees F

Frost-free period: 140 to 170 days

Map Unit Composition

Atkins and similar soils: 85 percent Minor components: 5 percent

Description of Atkins

Setting

Landform: Flood plains

Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 60 to 99 inches to lithic bedrock

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 2.00 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: Frequent Frequency of ponding: None

Available water capacity: High (about 9.0 inches)

Interpretive groups

Land capability (nonirrigated): 3w

Typical profile

0 to 9 inches: Silt loam 9 to 36 inches: Silt loam

36 to 64 inches: Stratified gravelly sandy loam to silty clay loam

Minor Components

Elkins

Percent of map unit: 5 percent Landform: Flood plains Down-slope shape: Concave Across-slope shape: Linear

Other vegetative classification: Wetlands (W3)

Data Source Information

Soil Survey Area: McKean County, Pennsylvania Survey Area Data: Version 5, Jul 31, 2009 Annex IV.A.6-C5.

Site 2 Soil Data

Map Unit Description

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Additional information about the map units described in this report is available in other soil reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the soil reports define some of the properties included in the map unit descriptions.

McKean County, Pennsylvania

Po—Pope loam

Map Unit Setting

Mean annual precipitation: 35 to 51 inches Mean annual air temperature: 46 to 55 degrees F

Frost-free period: 115 to 165 days

Map Unit Composition

Pope and similar soils: 85 percent Minor components: 6 percent

Description of Pope

Setting

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Linear Parent material: Recent alluvium

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: Occasional Frequency of ponding: None

Available water capacity: Moderate (about 8.7 inches)

Interpretive groups

Land capability (nonirrigated): 2w

Typical profile

0 to 6 inches: Loam

6 to 41 inches: Fine sandy loam 41 to 65 inches: Sandy loam

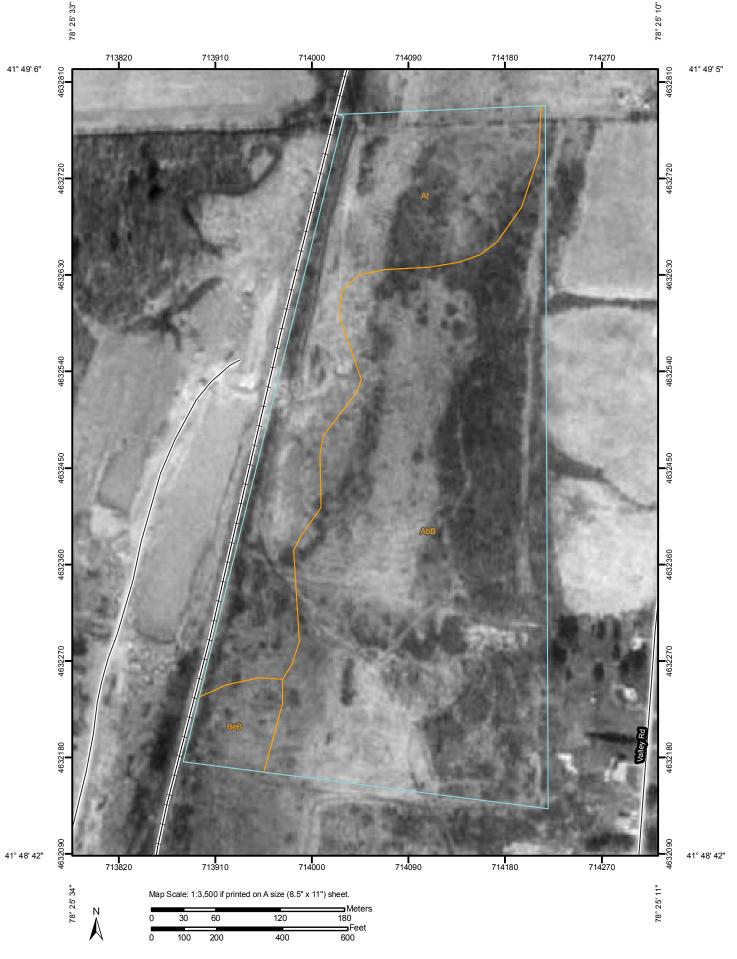
Minor Components

Atkins

Percent of map unit: 6 percent

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope


Down-slope shape: Concave Across-slope shape: Linear

Data Source Information

Soil Survey Area: McKean County, Pennsylvania

Survey Area Data: Version 5, Jul 31, 2009

Annex IV.A.6-C6.
Site 3 Soil Map

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Units

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

.. Gravelly Spot

Landfill

علد Marsh or swamp

Mine or Quarry

Miscellaneous Water

Rock Outcrop

Perennial Water

+ Saline Spot

"." Sandy Spot

... ------

Severely Eroded Spot

Sinkhole

Slide or Slip

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot

Other

Special Line Features

?ു Gully

- 01

Short Steep Slope

Other

Political Features

Cities

Water Features

Oceans

~

Streams and Canals

Transportation

+++

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

MAP INFORMATION

Map Scale: 1:3,500 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:20,000.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 17N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: McKean County, Pennsylvania Survey Area Data: Version 5, Jul 31, 2009

Date(s) aerial images were photographed: 4/8/1993

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

	McKean County, Pennsylvar	nia (PA083)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AbB	Albrights silt loam, 3 to 8 percent slopes	27.3	65.9%
At	Atkins silt loam	12.6	30.5%
ВеВ	Braceville silt loam, 3 to 8 percent slopes	1.5	3.6%
Totals for Area of Interes	t	41.4	100.0%

Annex IV.A.6-C7.
Site 3 Soil Data

Map Unit Description

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Additional information about the map units described in this report is available in other soil reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the soil reports define some of the properties included in the map unit descriptions.

McKean County, Pennsylvania

AbB—Albrights silt loam, 3 to 8 percent slopes

Map Unit Setting

Elevation: 500 to 1,500 feet

Mean annual precipitation: 35 to 51 inches Mean annual air temperature: 41 to 62 degrees F

Frost-free period: 115 to 165 days

Map Unit Composition

Albrights and similar soils: 85 percent Minor components: 5 percent

Description of Albrights

Setting

Landform: Mountain slopes

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Mountainbase

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Residuum weathered from acid, red siltstone,

sandstone, and shale

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: 18 to 32 inches to fragipan

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: About 12 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 2.7 inches)

Interpretive groups

Land capability (nonirrigated): 2e

Typical profile

0 to 8 inches: Silt loam

8 to 19 inches: Gravelly silt loam 19 to 70 inches: Channery clay loam

Minor Components

Brinkerton

Percent of map unit: 5 percent

Landform: Hillslopes

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Data Source Information

Soil Survey Area: McKean County, Pennsylvania

Survey Area Data: Version 5, Jul 31, 2009

Annex IV.A.6-C8.

Site 3 Soil Data

Map Unit Description

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

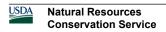
Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Additional information about the map units described in this report is available in other soil reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the soil reports define some of the properties included in the map unit descriptions.

McKean County, Pennsylvania

At—Atkins silt loam

Map Unit Setting


Elevation: 1,500 to 2,500 feet

Mean annual precipitation: 38 to 46 inches Mean annual air temperature: 46 to 57 degrees F

Frost-free period: 140 to 170 days

Map Unit Composition

Atkins and similar soils: 85 percent Minor components: 5 percent

Description of Atkins

Setting

Landform: Flood plains

Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 60 to 99 inches to lithic bedrock

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 2.00 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: Frequent Frequency of ponding: None

Available water capacity: High (about 9.0 inches)

Interpretive groups

Land capability (nonirrigated): 3w

Typical profile

0 to 9 inches: Silt loam 9 to 36 inches: Silt loam

36 to 64 inches: Stratified gravelly sandy loam to silty clay loam

Minor Components

Elkins

Percent of map unit: 5 percent Landform: Flood plains Down-slope shape: Concave Across-slope shape: Linear

Other vegetative classification: Wetlands (W3)

Data Source Information

Soil Survey Area: McKean County, Pennsylvania Survey Area Data: Version 5, Jul 31, 2009 Annex IV.A.6-C9.

Site 3 Soil Data

Map Unit Description

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Additional information about the map units described in this report is available in other soil reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the soil reports define some of the properties included in the map unit descriptions.

McKean County, Pennsylvania

BeB—Braceville silt loam, 3 to 8 percent slopes

Map Unit Setting

Mean annual precipitation: 36 to 46 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 120 to 160 days

Map Unit Composition

Braceville and similar soils: 85 percent

Minor components: 5 percent

Description of Braceville

Setting

Landform: Outwash terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Coarse-loamy outwash

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: 20 to 32 inches to fragipan

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water

(Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr)

Depth to water table: About 16 to 28 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Very low (about 2.6 inches)

Interpretive groups

Land capability (nonirrigated): 2e

Typical profile

0 to 8 inches: Silt loam 8 to 24 inches: Gravelly loam

24 to 36 inches: Gravelly sandy loam 36 to 60 inches: Stratified gravel to sand

Minor Components

Halsey

Percent of map unit: 5 percent

Landform: Depressions on outwash terraces Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Linear

Data Source Information

Soil Survey Area: McKean County, Pennsylvania

Survey Area Data: Version 5, Jul 31, 2009

Annex IV.A.6-E.

PNDI – Project Environmental Review Receipt

1. PROJECT INFORMATION

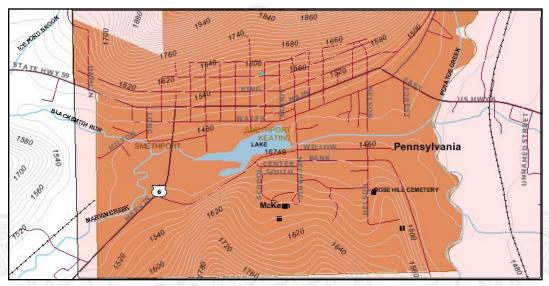
Project Name: Smethport

Date of review: 10/12/2009 8:37:34 AM

Project Category: Energy Storage, Production, and Transfer, Energy Production

(generation),Other

Project Area: 1434.2 acres


County: Mckean Township/Municipality: Smethport, Keating

Quadrangle Name: SMETHPORT

ZIP Code: 16749

Decimal Degrees: 41.79893 N, --78.45956 W

Degrees Minutes Seconds: 41° 47' 56.2" N, -78° 27' 34.5" W

2. SEARCH RESULTS

Agency	Results	Response
PA Game Commission	No Known Impact	No Further Review Required
PA Department of Conservation and Natural Resources	No Known Impact	No Further Review Required
PA Fish and Boat Commission	Potential Impact	FURTHER REVIEW IS REQUIRED, See
		Agency Response
U.S. Fish and Wildlife Service	No Known Impact	No Further Review Required

As summarized above, Pennsylvania Natural Diversity Inventory (PNDI) records indicate there may be potential impacts to threatened and endangered and/or special concern species and resources within the project area. If the response above indicates "No Further Review Required" no additional communication with the respective agency is required. If the response is "Further Review Required" or "See Agency Response," refer to the appropriate agency comments below. Please see the DEP Information Section of this receipt if a PA Department of Environmental Protection Permit is required.

3. AGENCY COMMENTS

Regardless of whether a DEP permit is necessary for this proposed project, any potential impacts to threatened and endangered species and/or special concern species and resources must be resolved with the appropriate jurisdictional agency. In some cases, a permit or authorization from the jurisdictional agency may be needed if adverse impacts to these species and habitats cannot be avoided.

These agency determinations and responses are **valid for one year** (from the date of the review), and are based on the project information that was provided, including the exact project location; the project type, description, and features; and any responses to questions that were generated during this search. If any of the following change: 1) project location, 2) project size or configuration, 3) project type, or 4) responses to the questions that were asked during the online review, the results of this review are not valid, and the review must be searched again via the PNDI Environmental Review Tool and resubmitted to the jurisdictional agencies. The PNDI tool is a primary screening tool, and a desktop review may reveal more or fewer impacts than what is listed on this PNDI receipt.

PA Game Commission

RESPONSE: No Impact is anticipated to threatened and endangered species and/or special concern species and resources.

PA Department of Conservation and Natural Resources

RESPONSE: No Impact is anticipated to threatened and endangered species and/or special concern species and resources.

PA Fish and Boat Commission

PFBC Species:

Scientific Name: Alasmidonta marginata

Common Name: Elktoe

Current Status: Special Concern Species*
Proposed Status: Special Concern Species*

Scientific Name: Lasmigona compressa Common Name: Creek Heelsplitter

Current Status: Special Concern Species*
Proposed Status: Special Concern Species*

RESPONSE: Further review of this project is necessary to resolve the potential impacts(s). Please send project information to this agency for review (see WHAT TO SEND).

U.S. Fish and Wildlife Service

RESPONSE: No impacts to <u>federally</u> listed or proposed species are anticipated. Therefore, no further consultation/coordination under the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531 *et seq.* is required. Because no take of federally listed species is anticipated, none is authorized. This response does not reflect potential Fish and Wildlife Service concerns under the Fish and Wildlife Coordination Act or other

Project Search ID: 20091012213907

authorities.

- * Special Concern Species or Resource Plant or animal species classified as rare, tentatively undetermined or candidate as well as other taxa of conservation concern, significant natural communities, special concern populations (plants or animals) and unique geologic features.
- ** Sensitive Species Species identified by the jurisdictinal agency as collectible, having economic value, or being susceptible to decline as a result of visitation.

WHAT TO SEND TO JURISDICTIONAL AGENCIES

If project information was requested by one or more of the agencies above, send the following information to the agency(s) seeking this information (see AGENCY CONTACT INFORMATION).

Check-list of Minimum Materials to be submitted:	
SIGNED copy of this Project Environmental Review Receipt	

Project narrative with a description of the overall project, the work to be preformed, current physical characteristics of the site and acreage to be impacted.

___Project location information (name of USGS Quadrangle, Township/Municipality, and County)

USGS 7.5-minute Quadrangle with project boundary clearly indicated, and quad name on the map

The inclusion of the following information may expedite the review process.

____A <u>basic</u> site plan(particularly showing the relationship of the project to the physical features <u>such as</u> wetlands, streams, ponds, rock outcrops, etc.)

Color photos keyed to the basic site plan (i.e. showing on the site plan where and in what direction each photo was taken and the date of the photos)

Information about the presence and location of wetlands in the project area, and how this was determined (e.g., by a qualified wetlands biologist), if wetlands are present in the project area, provide project plans showing the location of all project features, as well as wetlands and streams

The DEP permit(s) required for this project

4. DEP INFORMATION

The Pa Department of Environmental Protection (DEP) requires that a signed copy of this receipt, along with any required documentation from jurisdictional agencies concerning resolution of potential impacts, be submitted with applications for permits requiring PNDI review. For cases where a "Potential Impact" to threatened and endangered species has been identified before the application has been submitted to DEP, the application should not be submitted until the impact has been resolved. For cases where "Potential Impact" to special concern species and resources has been identified before the application has been submitted, the application should be submitted to DEP along with the PNDI receipt, a completed PNDI form and a USGS 7.5 minute quadrangle map with the project boundaries delineated on the map. The PNDI Receipt should also be submitted to the appropriate agency according to directions on the PNDI Receipt. DEP and the jurisdictional agency will work together to resolve the potential impact(s). See the DEP PNDI policy at http://www.naturalheritage.state.pa.us.

5. ADDITIONAL INFORMATION

The PNDI environmental review website is a preliminary screening tool. There are often delays in updating species status classifications. Because the proposed status represents the best available information regarding the conservation status of the species, state jurisdictional agency staff give the proposed statuses at least the same consideration as the current legal status. If surveys or further information reveal that a threatened and endangered and/or special concern species and resources exist in your project area, contact the appropriate jurisdictional agency/agencies immediately to identify and resolve any impacts.

For a list of species known to occur in the county where your project is located, please see the species lists by county found on the PA Natural Heritage Program (PNHP) home page (www.naturalheritage.state.pa.us). Also note that the PNDI Environmental Review Tool only contains information about species occurrences that have actually been reported to the PNHP.

6. AGENCY CONTACT INFORMATION

PA Department of Conservation and **Natural Resources**

Bureau of Forestry, Ecological Services Section 400 Market Street, PO Box 8552, Harrisburg, PA. 17105-8552

Fax:(717) 772-0271

Company/Business Name:

Name:

Address: City, State, Zip:

U.S. Fish and Wildlife Service

Endangered Species Section 315 South Allen Street, Suite 322, State College, PA. 16801-4851 NO Faxes Please.

PA Fish and Boat Commission

Division of Environmental Services 450 Robinson Lane, Bellefonte, PA. 16823-7437 **NO Faxes Please**

PA Game Commission

Bureau of Wildlife Habitat Management Division of Environmental Planning and Habitat Protection 2001 Elmerton Avenue, Harrisburg, PA. 17110-9797 Fax:(717) 787-6957

7. PROJECT CONTACT INFORMATION

Phone:()_ Email:	Fax:()		
8. CERTIFICATION	NC			
I certify that ALL of the proj size/configuration, project t type, location, size or config online review change, I agr	pe, answers to questions guration changes, or if the) is true, accurate answers to any e	e and complete. In questions that were	addition, if the project
applicant/project propo	nent signature	date		

McKean County State Species Types

To copy these items use ctrl-a, then you can paste into other applications like word

processors, spreadsheets, etc.

processors, spr	eadsheets, etc.					
Scientific Name	Common Name	Global Rank	State Rank	State Status	Proposed State Status	Federal Status
Carex wiegandii	Wiegands Sedge	G4	S1	PT	PT	
Gomphus descriptus	Harpoon Clubtail	G4	S1S2			
Accipiter gentilis	Northern Goshawk	G5	S2S3B,S3N		CR	
Aeshna tuberculifera	Black-tipped Darner	G4	S2S3			
Empidonax flaviventris	Yellow-bellied Flycatcher	G5	S1S2B	PE	PE	
Ophiogomphus mainensis	Maine Snaketail	G4	S3			
Phoxinus erythrogaster	Southern Redbelly Dace	G5	S1	PT	PT	
Sylvilagus obscurus	Appalachian Cottontail	G4	SU			
Lampsilis fasciola	Wavy-rayed Lampmussel	G5	S4		N	
Aeshna verticalis	Green-striped Darner	G5	S3S4			
Satyrodes eurydice	Eyed Brown	G4	S3			
Liochlorophis vernalis	Smooth Green Snake	G5	S3S4			
Viburnum trilobum	Highbush-cranberry	G5T5	S3S4	TU	PR	
Lanthus parvulus	Northern Pygmy Clubtail	G4	S3S4			
Calopteryx amata	Superb Jewelwing	G4	S2S3			
Gaultheria hispidula	Creeping Snowberry	G5	S 3	PR	PR	
Ichthyomyzon bdellium	Ohio Lamprey	G3G4	S2S3	PC	СР	

Scirpus pedicellatus	Stalked Bulrush	G4	S1	РТ	PT	
Ribes triste	Red Currant	G5	S2	PT	PT	
Catharus ustulatus	Swainson's Thrush	G5	S2S3B,S5N		CR	
Leucorrhinia proxima	Red-waisted Whiteface	G5	S2			
Populus balsamifera	Balsam Poplar	G5	S1	PE	PE	
Lycaena hyllus	Bronze Copper	G5	S3			
Argia tibialis	Blue-tipped Dancer	G5	S1			
Amelanchier bartramiana	Oblong-fruited Serviceberry	G5	S1	PE	PE	
Percina copelandi	Channel Darter	G4	S2		PT	
High-gradient clearwater creek	High-gradient Clearwater Creek	GNR	S3			
Somatochlora elongata	Ski-tailed Emerald	G5	S2			
Parthenium integrifolium	American Fever-few	G5	S1	TU	PE	
Pleurobema sintoxia	Round Pigtoe	G4G5	S2		PE	
Crotalus horridus	Timber Rattlesnake	G4	S3S4	PC	CA	
Alisma triviale	Northern Water- plantain	G5	S1	PE	PE	
Glaucomys sabrinus	Northern Flying Squirrel	G5	SU	PE		
Gallinago delicata	Wilson's Snipe	G5	S3B,S3N		CR	
Ardea herodias	Great Blue Heron	G5	S3S4B,S4N			
Speyeria atlantis	Atlantis Fritillary	G5	S 3			
Somatochlora forcipata	Forcipate Emerald	G5	S2			
Cordulia shurtleffi	American Emerald	G5	S3S4			

Chlosyne harrisii	Harris' Checkerspot	G4	S 3			
Hesperia sassacus	Indian Skipper	G5	S3			
Somatochlora walshii	Brush-tipped Emerald	G5	S2			
Thamnophis brachystoma	Shorthead Garter Snake	G4	S3			
Carex ormostachya	Spike Sedge	G4	S2	N	PT	
Ichthyomyzon greeleyi	Mountain Brook Lamprey	G3G4	S2	PT	РТ	
Filipendula rubra	Queen-of-the-prairie	G4G5	S1S2	TU	TU	
Boyeria grafiana	Ocellated Darner	G5	S3			
Myotis septentrionalis	Northern Myotis	G4	S3B,S3N		CR	
Haliaeetus leucocephalus	Bald Eagle	G5	S2B	PT	РТ	
Lasionycteris noctivagans	Silver-haired Bat	G5	SUB		CR	
Hesperia leonardus	Leonard's Skipper	G4	S3			
Sorex palustris albibarbis	Water Shrew	G5T5	S3		CR	
Spiranthes casei	Case's Ladies'- tresses	G4	S1	PE	PE	
Stylurus scudderi	Zebra Clubtail	G4	S1			
Epilobium strictum	Downy Willow-herb	G5?	S3	PE	PR	
Pandion haliaetus	Osprey	G5	S2B	PT	PT	
Boloria selene myrina	Silver Bordered Fritillary	G5T5	S3			
Viola selkirkii	Great-spurred Violet	G5?	S3S4	N	PR	
Lota lota	Burbot	G5	S1S2	PE	PE	
Juncus filiformis	Thread Rush	G5	S3	PR	PR	

Ī	-					
Streptopus amplexifolius	White Twisted-stalk	G5	S1	PT	PE	
Cardamine maxima	Large Toothwort	G5	S2	N	PT	
Hemlock (white pine) - northern hardwood forest		GNR	S5			
Lampetra appendix	American Brook Lamprey	G4	S3	PC	СР	
Lasmigona compressa	Creek Heelsplitter	G5	S2S3		CR	
Alasmidonta marginata	Elktoe	G4	S4		N	
Sympetrum obtrusum	White-faced Meadowhawk	G5	S3S4			
Carex careyana	Carey's Sedge	G4G5	S1	PE	PE	
Red spruce palustrine forest		GNR	S3			
Erosional remnant	Erosional Remnant	GNR	SNR			
Percina macrocephala	Longhead Darter	G3	S2S3		PT	
Notropis dorsalis	Bigmouth Shiner	G5	S2	PT	PT	
Fusconaia subrotunda	Long-solid	G3	S1		PE	
Leucorrhinia glacialis	Crimson-ringed Whiteface	G5	S3S4			
Eumeces anthracinus	Coal Skink	G5	S3			

Elktoe (Alasmidonta marginata)

Freshwater Mussel Species of Concern

State Rank: S4 (apparently secure), Global Rank: G4 (apparently secure)

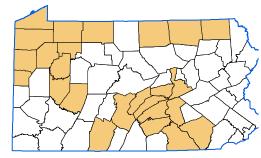
Identification

The Elktoe (*Alasmidonta marginata*) is a moderately sized mussel, commonly reaching 75 mm in length. The shell is trapezoidal or rhomboid shaped, inflated, and thin (Parmalee 1998, Strayer and Jirka 1997). The anterior margin is rounded, with a somewhat straight ventral margin. The ventral and posterior margins meet in a blunt, squared point (Parmalee 1998). The posterior ridge is the focal point of the shell and is sharply angled. The posterior slope is flattened with fine, well-developed ridges crossing the growth lines. The beaks are high, inflated, and are comprised of three to four heavy double-looped ridges. The periostracum (outer covering) is usually yellowish or greenish, with green rays and darker spots that may appear connected to the rays (rays may appear interrupted). Lateral teeth are vestigial and appear as nothing more than indistinct bumps along the hinge line. The nacre (inner iridescent coloring) is usually bluish-white (Parmalee 1998; Sietman 2003; Strayer and Jirka 1997).

Photo: http://www.lwatrous.com/missouri_mollu sks/mussels/images/a_marginata.jpg

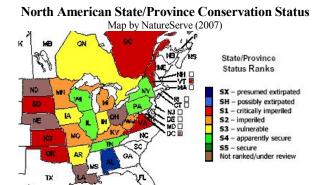
<u>Habitat</u>

The Elktoe can be found in medium to large size streams, but is most common in smaller streams. This species is present in greatest abundance in small shallow rivers with a moderately fast current and riffles. The preferred substrate is fine gravel mixed with sand (Parmalee 1998; Sietman 2003; Strayer and Jirka 1997; NatureServe 2005).


Host Fish

Hosts for Elktoe glochidia include the white sucker, northern hogsucker, shorthead redhorse, rockbass, and warmouth (Parmalee 1998; Strayer and Jirka 1997).

Status


Populations of *Alasmidonta marginata* can be found from Ontario, Canada to Alabama. Its eastern boundary ranges along the east coast from New York to

Pennsylvania Distribution by County

Pennsylvania Natural Heritage Program data 2007

Virginia and the western boundary ranges from North Dakota to Oklahoma. Most populations are located in Ohio, Indiana, and Illinois. This mussel is thought to have been extirpated from Alabama since it has not been reported during surveys for several decades (NatureServe 2005; Parmalee 1998; Strayer and Jirka 1997). This species is not common in Pennsylvania but has been found in the Susquehanna River and Ohio drainages. The proposed state status of the Elktoe is not ranked (N), meaning there is insufficient data available to provide an adequate basis for assignment to specific categories concerning the security of known populations (PNHP). The

state rank of this species suggests it is secure at some sites within Pennsylvania state boundaries. However, more surveys are required to determine the status of this species and other freshwater mussels in Pennsylvania.

Alasmidonta marginata is typically thought of as an interior basin species. It is not well understood how Alasmidonta marginata reached the Susquehanna River basin from its native range. Some researchers believe it may have drifted from the Allegheny River basin to Susquehanna via postglacial influences. An alternative theory states this species was introduced to the Susquehanna River basin via human activity (Strayer and Jirka 1997).

References

NatureServe. 2007. NatureServe Explorer: An online encyclopedia of life [web application]. Version 6.2. NatureServe, Arlington, Virginia. Available http://www.natureserve.org/explorer. (Accessed: September 4, 2007).

Parmalee, P.W. and Bogan, A.E. 1998. The Freshwater Mussels of Tennessee. The University of Tennessee, Knoxville, TN 328 pp. Pennsylvania Natural Heritage Program. Biota of Concern In Pennsylvania (BOCIP) Lists. Website:

www.naturalheritage.state.pa.us/invertebrates.aspx
Sietman, B.E. 2003. Field Guide to the Freshwater Mussels of Minnesota. Minnesota Department of Natural Resources, St. Paul, MN 140 pp.
Strayer, D.L. and K.J. Jirka. 1997. The Pearly Mussels of New York State. The New York State Education Dept., Albany, N.Y. 113 pp and plate

Creek Heelsplitter Lasmigona compressa

Freshwater Mussel Species of Concern State Rank: S2S3 Global Rank: G5

Identification

The creek heelsplitter (Lasmigona compressa) is a moderately sized mussel, usually less than 100 mm in length. The shell is subtrapeziodal in shape, compressed, and moderately thick. Juvenile specimens can sometimes have a small dorsal wing (Strayer and Jirka 1997). The periostracum (outer covering) is somewhat smooth and varies from greenish (juvenile) to greenishblack (adult), sometimes with fine green rays (usually apparent in young individuals). The beak sculpture is obvious and doublelooped (Sietman 2003; Strayer and Jirka 1997). Pseudocardinal teeth are present but are usually smooth and lamellar (reduced). Lateral teeth are delicate, but functional and interlocking. There is a prominent interdental tooth in the left valve between the lateral teeth and pseudocardinal teeth (Strayer and Jirka 1997). The nacre (inner iridescent coloring) is usually white, but can be cream or salmon colored (especially toward the beak cavity) (Sietman 2003; Strayer and Jirka 1997).

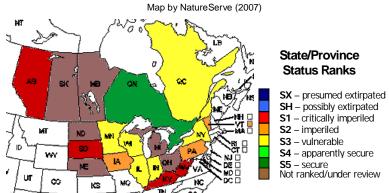
www.darbycreeks.org/creekheelsplitterLittleDarb y72.jpg

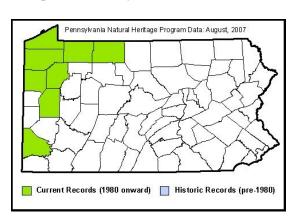
Habitat

The creek heelsplitter is typically located in creeks, but can sometimes be observed in streams too small to adequately support other species of freshwater mussels (Strayer and Jirka 1997). It is most commonly found in headwaters of small or medium rivers in fine gravel or sand (Sietman 2003; www.nps.gov/miss/features/mussels/musselpages/creekheelsplitter.html).

Host Fish

Suitable host fish for the creek heelsplitter include the slimy sculpin, spotfin shiner, black crappie, and the yellow perch (Strayer and Jirka 1997; www.nps.gov/miss/features/mussels/musselpages/creekheelsplitter.html).


Status


Lasmigona compressa lives in the Mississippi River basin from Kentucky north, as well as in the St. Lawrence basin, the Great Lakes basin, and the Hudson River basin (Strayer and Jirka 1997; www.natureserve.org/explorer). Additionally, Lasmigona compressa has been located in the northeastern headwaters of the Susquehanna River

basin (Strayer and Jirka 1997). It is not well understood how this species migrated to these locations. The Pennsylvania proposed state status of the creek heelsplitter is condition rare (CR) due to a lack of individuals located during mussel surveys (www.naturalheritage.state.pa.us/invertebrates.aspx). Little is known about the status of freshwater mussels in Pennsylvania and the United States. Because of this, more surveys are required to determine the status of this species and other freshwater mussels in Pennsylvania.

The creek heelsplitter can be characterized by its compressed, trapezoidal shape, small dorsal wing, and large interdental tooth. However, it can be confused with *Lasmigona subviridis*. The latter species is smaller, more ovate, and has a significantly smaller interdental tooth. Additionally, its beak sculpture only has three to four smaller, less deeply curved double-looped bars that are distinctly nodulous. The beak sculpture of *Lasmigona compressa* consists of four to five large, deeply grooved double-looped bars of even height. Additionally, *Lasmigona compressa* is one of the few freshwater mussels that are hermaphroditic (Strayer and Jirka 1997).

North American State/Province Conservation Status

References

National Park Service. U.S. Department of the Interior. Mississippi National River and Recreation Area. Website:

www.nps.gov/miss/features/mussels/musselpages/creekheelsplitter.htmlNatureServe.

2007. NatureServe Explorer: An online encyclopedia of life [web application]. Version 6.2. NatureServe, Arlington, Virginia. Available http://www.natureserve.org/explorer. (Accessed: August 31, 2007).

Pennsylvania Natural Heritage Program. Biota of Concern In Pennsylvania (BOCIP) Lists. Website: www.naturalheritage.state.pa.us/invertebrates.aspx

Sietman, B. E. 2003. Field Guide to the Freshwater Mussels of Minnesota. Department of Natural Resources, St. Paul, MN 140 pp.

Strayer, D.L. and K.J. Jirka. 1997. The Pearly Mussels of New York State. The New York State Education Dept., Albany, NY 113 pp and plates

Annex IV.A.6-F1. Species List

McKean County State Species Types

To copy these items use ctrl-a, then you can paste into other applications like word processors,

spreadsheets, et	c.					
Scientific Name	Common Name	Global Rank	State Rank	State Status	Proposed State Status	Federal Status
Carex wiegandii	Wiegands Sedge	G4	S1	PT	PT	
Gomphus descriptus	Harpoon Clubtail	G4	S1S2			
Accipiter gentilis	Northern Goshawk	G5	S2S3B,S3N		CR	
Aeshna tuberculifera	Black-tipped Darner	G4	S2S3			
Empidonax flaviventris	Yellow-bellied Flycatcher	G5	S1S2B	PE	PE	
Ophiogomphus mainensis	Maine Snaketail	G4	S3			
Phoxinus erythrogaster	Southern Redbelly Dace	G5	S1	PT	PT	
Sylvilagus obscurus	Appalachian Cottontail	G4	SU			
Lampsilis fasciola	Wavy-rayed Lampmussel	G5	S4		N	
Aeshna verticalis	Green-striped Darner	G5	S3S4			
Satyrodes eurydice	Eyed Brown	G4	S3			
Liochlorophis vernalis	Smooth Green Snake	G5	S3S4			
Viburnum trilobum	Highbush-cranberry	G5T5	S3S4	TU	PR	
Lanthus parvulus	Northern Pygmy Clubtail	G4	S3S4			
Calopteryx amata	Superb Jewelwing	G4	S2S3			
Gaultheria hispidula	Creeping Snowberry	G5	S3	PR	PR	
Ichthyomyzon bdellium	Ohio Lamprey	G3G4	S2S3	PC	СР	
Scirpus pedicellatus	Stalked Bulrush	G4	S1	РТ	PT	
Ribes triste	Red Currant	G5	S2	PT	PT	
Catharus ustulatus	Swainson's Thrush	G5	S2S3B,S5N		CR	
Leucorrhinia	Red-waisted	G5	S2			

proxima	Whiteface					
Populus balsamifera	Balsam Poplar	G5	S1	PE	PE	
Lycaena hyllus	Bronze Copper	G5	S3			
Argia tibialis	Blue-tipped Dancer	G5	S1			
Amelanchier bartramiana	Oblong-fruited Serviceberry	G5	S1	PE	PE	
Percina copelandi	Channel Darter	G4	S2		PT	
High-gradient clearwater creek	High-gradient Clearwater Creek	GNR	S3			
Somatochlora elongata	Ski-tailed Emerald	G5	S2			
Parthenium integrifolium	American Fever-few	G5	S1	TU	РЕ	
Pleurobema sintoxia	Round Pigtoe	G4G5	S2		PE	
Crotalus horridus	Timber Rattlesnake	G4	S3S4	PC	CA	
Alisma triviale	Northern Water- plantain	G5	S1	PE	PE	
Glaucomys sabrinus	Northern Flying Squirrel	G5	SU	PE		
Gallinago delicata	Wilson's Snipe	G5	S3B,S3N		CR	
Ardea herodias	Great Blue Heron	G5	S3S4B,S4N			\neg
Speyeria atlantis	Atlantis Fritillary	G5	S3			
Somatochlora forcipata	Forcipate Emerald	G5	S2			
Cordulia shurtleffi	American Emerald	G5	S3S4			
Chlosyne harrisii	Harris' Checkerspot	G4	S3			
Hesperia sassacus	Indian Skipper	G5	S3			
Somatochlora walshii	Brush-tipped Emerald	G5	S2			
Thamnophis brachystoma	Shorthead Garter Snake	G4	S3			
Carex ormostachya	Spike Sedge	G4	S2	N	PT	
Ichthyomyzon greeleyi	Mountain Brook Lamprey	G3G4	S2	PT	PT	
Filipendula						

rubra	Queen-of-the-prairie	G4G5	S1S2	TU	TU
Boyeria grafiana	Ocellated Darner	G5	S3		
Myotis septentrionalis	Northern Myotis	G4	S3B,S3N		CR
Haliaeetus leucocephalus	Bald Eagle	G5	S2B	РТ	PT
Lasionycteris noctivagans	Silver-haired Bat	G5	SUB		CR
Hesperia leonardus	Leonard's Skipper	G4	S3		
Sorex palustris albibarbis	Water Shrew	G5T5	S3		CR
Spiranthes casei	Case's Ladies'- tresses	G4	S1	PE	PE
Stylurus scudderi	Zebra Clubtail	G4	S1		
Epilobium strictum	Downy Willow-herb	G5?	S3	PE	PR
Pandion haliaetus	Osprey	G5	S2B	РТ	PT
Boloria selene myrina	Silver Bordered Fritillary	G5T5	S3		
Viola selkirkii	Great-spurred Violet	G5?	S3S4	N	PR
Lota lota	Burbot	G5	S1S2	PE	PE
Juncus filiformis	Thread Rush	G5	S3	PR	PR
Streptopus amplexifolius	White Twisted-stalk	G5	S1	PT	PE
Cardamine maxima	Large Toothwort	G5	S2	N	PT
Hemlock (white pine) - northern hardwood forest		GNR	S5		
Lampetra appendix	American Brook Lamprey	G4	S3	PC	СР
Lasmigona compressa	Creek Heelsplitter	G5	S2S3		CR
Alasmidonta marginata	Elktoe	G4	S4		N
Sympetrum obtrusum	White-faced Meadowhawk	G5	S3S4		
Carex careyana	Carey's Sedge	G4G5	S1	PE	PE

Red spruce palustrine forest		GNR	S3			
Erosional remnant	Erosional Remnant	GNR	SNR			
Percina macrocephala	Longhead Darter	G3	S2S3		PT	
Notropis dorsalis	Bigmouth Shiner	G5	S2	PT	PT	
Fusconaia subrotunda	Long-solid	G3	S1		PE	
Leucorrhinia glacialis	Crimson-ringed Whiteface	G5	S3S4			
Eumeces anthracinus	Coal Skink	G5	S3			

Annex IV.A.6-F2. Fresh Water Mussels (Elktoe)

Elktoe (Alasmidonta marginata)

Freshwater Mussel Species of Concern

State Rank: S4 (apparently secure), Global Rank: G4 (apparently secure)

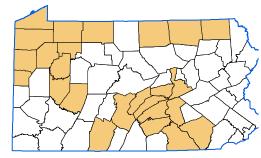
Identification

The Elktoe (*Alasmidonta marginata*) is a moderately sized mussel, commonly reaching 75 mm in length. The shell is trapezoidal or rhomboid shaped, inflated, and thin (Parmalee 1998, Strayer and Jirka 1997). The anterior margin is rounded, with a somewhat straight ventral margin. The ventral and posterior margins meet in a blunt, squared point (Parmalee 1998). The posterior ridge is the focal point of the shell and is sharply angled. The posterior slope is flattened with fine, well-developed ridges crossing the growth lines. The beaks are high, inflated, and are comprised of three to four heavy double-looped ridges. The periostracum (outer covering) is usually yellowish or greenish, with green rays and darker spots that may appear connected to the rays (rays may appear interrupted). Lateral teeth are vestigial and appear as nothing more than indistinct bumps along the hinge line. The nacre (inner iridescent coloring) is usually bluish-white (Parmalee 1998; Sietman 2003; Strayer and Jirka 1997).

Photo: http://www.lwatrous.com/missouri_mollu sks/mussels/images/a_marginata.jpg

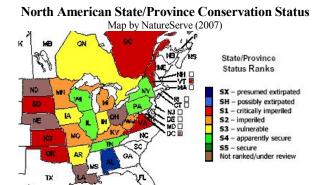
<u>Habitat</u>

The Elktoe can be found in medium to large size streams, but is most common in smaller streams. This species is present in greatest abundance in small shallow rivers with a moderately fast current and riffles. The preferred substrate is fine gravel mixed with sand (Parmalee 1998; Sietman 2003; Strayer and Jirka 1997; NatureServe 2005).


Host Fish

Hosts for Elktoe glochidia include the white sucker, northern hogsucker, shorthead redhorse, rockbass, and warmouth (Parmalee 1998; Strayer and Jirka 1997).

Status


Populations of *Alasmidonta marginata* can be found from Ontario, Canada to Alabama. Its eastern boundary ranges along the east coast from New York to

Pennsylvania Distribution by County

Pennsylvania Natural Heritage Program data 2007

Virginia and the western boundary ranges from North Dakota to Oklahoma. Most populations are located in Ohio, Indiana, and Illinois. This mussel is thought to have been extirpated from Alabama since it has not been reported during surveys for several decades (NatureServe 2005; Parmalee 1998; Strayer and Jirka 1997). This species is not common in Pennsylvania but has been found in the Susquehanna River and Ohio drainages. The proposed state status of the Elktoe is not ranked (N), meaning there is insufficient data available to provide an adequate basis for assignment to specific categories concerning the security of known populations (PNHP). The

state rank of this species suggests it is secure at some sites within Pennsylvania state boundaries. However, more surveys are required to determine the status of this species and other freshwater mussels in Pennsylvania.

Alasmidonta marginata is typically thought of as an interior basin species. It is not well understood how Alasmidonta marginata reached the Susquehanna River basin from its native range. Some researchers believe it may have drifted from the Allegheny River basin to Susquehanna via postglacial influences. An alternative theory states this species was introduced to the Susquehanna River basin via human activity (Strayer and Jirka 1997).

References

NatureServe. 2007. NatureServe Explorer: An online encyclopedia of life [web application]. Version 6.2. NatureServe, Arlington, Virginia. Available http://www.natureserve.org/explorer. (Accessed: September 4, 2007).

Parmalee, P.W. and Bogan, A.E. 1998. The Freshwater Mussels of Tennessee. The University of Tennessee, Knoxville, TN 328 pp. Pennsylvania Natural Heritage Program. Biota of Concern In Pennsylvania (BOCIP) Lists. Website:

www.naturalheritage.state.pa.us/invertebrates.aspx
Sietman, B.E. 2003. Field Guide to the Freshwater Mussels of Minnesota. Minnesota Department of Natural Resources, St. Paul, MN 140 pp.
Strayer, D.L. and K.J. Jirka. 1997. The Pearly Mussels of New York State. The New York State Education Dept., Albany, N.Y. 113 pp and plate

Annex IV.A.6-F3. Fresh Water Mussels (Creek Heelsplitter)

Creek Heelsplitter Lasmigona compressa

Freshwater Mussel Species of Concern State Rank: S2S3 Global Rank: G5

Identification

The creek heelsplitter (Lasmigona compressa) is a moderately sized mussel, usually less than 100 mm in length. The shell is subtrapeziodal in shape, compressed, and moderately thick. Juvenile specimens can sometimes have a small dorsal wing (Strayer and Jirka 1997). The periostracum (outer covering) is somewhat smooth and varies from greenish (juvenile) to greenishblack (adult), sometimes with fine green rays (usually apparent in young individuals). The beak sculpture is obvious and doublelooped (Sietman 2003; Strayer and Jirka 1997). Pseudocardinal teeth are present but are usually smooth and lamellar (reduced). Lateral teeth are delicate, but functional and interlocking. There is a prominent interdental tooth in the left valve between the lateral teeth and pseudocardinal teeth (Strayer and Jirka 1997). The nacre (inner iridescent coloring) is usually white, but can be cream or salmon colored (especially toward the beak cavity) (Sietman 2003; Strayer and Jirka 1997).

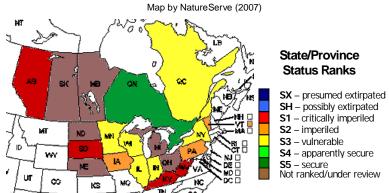
www.darbycreeks.org/creekheelsplitterLittleDarb y72.jpg

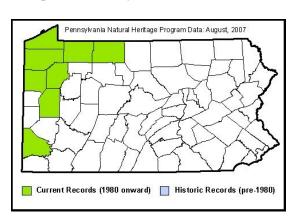
Habitat

The creek heelsplitter is typically located in creeks, but can sometimes be observed in streams too small to adequately support other species of freshwater mussels (Strayer and Jirka 1997). It is most commonly found in headwaters of small or medium rivers in fine gravel or sand (Sietman 2003; www.nps.gov/miss/features/mussels/musselpages/creekheelsplitter.html).

Host Fish

Suitable host fish for the creek heelsplitter include the slimy sculpin, spotfin shiner, black crappie, and the yellow perch (Strayer and Jirka 1997; www.nps.gov/miss/features/mussels/musselpages/creekheelsplitter.html).


Status


Lasmigona compressa lives in the Mississippi River basin from Kentucky north, as well as in the St. Lawrence basin, the Great Lakes basin, and the Hudson River basin (Strayer and Jirka 1997; www.natureserve.org/explorer). Additionally, Lasmigona compressa has been located in the northeastern headwaters of the Susquehanna River

basin (Strayer and Jirka 1997). It is not well understood how this species migrated to these locations. The Pennsylvania proposed state status of the creek heelsplitter is condition rare (CR) due to a lack of individuals located during mussel surveys (www.naturalheritage.state.pa.us/invertebrates.aspx). Little is known about the status of freshwater mussels in Pennsylvania and the United States. Because of this, more surveys are required to determine the status of this species and other freshwater mussels in Pennsylvania.

The creek heelsplitter can be characterized by its compressed, trapezoidal shape, small dorsal wing, and large interdental tooth. However, it can be confused with *Lasmigona subviridis*. The latter species is smaller, more ovate, and has a significantly smaller interdental tooth. Additionally, its beak sculpture only has three to four smaller, less deeply curved double-looped bars that are distinctly nodulous. The beak sculpture of *Lasmigona compressa* consists of four to five large, deeply grooved double-looped bars of even height. Additionally, *Lasmigona compressa* is one of the few freshwater mussels that are hermaphroditic (Strayer and Jirka 1997).

North American State/Province Conservation Status

References

National Park Service. U.S. Department of the Interior. Mississippi National River and Recreation Area. Website:

www.nps.gov/miss/features/mussels/musselpages/creekheelsplitter.htmlNatureServe.

2007. NatureServe Explorer: An online encyclopedia of life [web application]. Version 6.2. NatureServe, Arlington, Virginia. Available http://www.natureserve.org/explorer. (Accessed: August 31, 2007).

Pennsylvania Natural Heritage Program. Biota of Concern In Pennsylvania (BOCIP) Lists. Website: www.naturalheritage.state.pa.us/invertebrates.aspx

Sietman, B. E. 2003. Field Guide to the Freshwater Mussels of Minnesota. Department of Natural Resources, St. Paul, MN 140 pp.

Strayer, D.L. and K.J. Jirka. 1997. The Pearly Mussels of New York State. The New York State Education Dept., Albany, NY 113 pp and plates

Annex IV.A.6-G1.

ER Submission

Pennsylvania Historical & Museum Commission Bureau for Historic Preservation

	BHP Use Only
ER#	

Request to Initiate Consultation in Compliance with the State History Code and Section 106 of the National Historic Preservation Act

Applicant Information ()	print neatly, this will be used in the return envelope)
Applicant Name	
Street Address	
City	Phone Number
State/ZIP	
5 (4/6) 211	
Contact Porcon to Pocoi	ve Response (if applicable) (print neatly, this will be used in the return
envelope)	(Print heatry, this will be used in the return
Name/Company Street Address	
	DI AY I
City	Phone Number
State/ZIP	
Project Information	
Project Title	
-	
Project Location	
and/address	
Municipality	County Name
If this project was ever revie	wed before, include previous ER #
Project Type (Check all	
	sored or On Government Land?
☐ Yes ☐ No	Specify Agency and/or Program Name Below
State Agency:	Local:
Federal Agency:	Other:
Permits or Approvals Requ	uired
Yes No	Specify Agency and/or Program Name Below
Anticipated Permits:	
State Agency:	Program:
Federal Agency:	Program:
Agency Office to Receive	e Response (Check all that apply)
Army Corps of Engineers:	
DEP Office:	Central Office Regional Office:
☐ District Mining Office:	Oil & Gas Office:
Other: (provide address)	

Pennsylvania Historical & Museum Commission Bureau for Historic Preservation

	BHP Use Only	
ER#		

Required Project Information for BHP/SHPO Review
Total Acres in the property under review:
Total acres of earth disturbance for this proposed activity:
☐ Are there any buildings or structures within the project area? ☐ Yes ☐ No Approximate age of buildings:
Project located in or adjacent to a historic district? Yes No Unsure
Name of Historic District
Submissions Must Also Include:
MAP LOCATION: A 7.5 USGS Map showing the project boundary and the Area of Potential Effect (APE). The APE should include indirect effects, such as visual and audible impacts. Federal Projects must provide an explanation of how the APE was determined.
PHOTOS: Photos of all buildings or structures in the APE over 50 years old. If the property is over 50 years old submit a Historic Resource Form with this initial request. The forms are available at http://www.phmc.state.pa.us/bhp/inventories .
PROJECT DESCRIPTION NARRATIVE: Provide a detailed project description describing the project, any ground disturbance, any previous land use, and age of all effected buildings in the project area. Attach a site map showing the location of all buildings in the project area.
I have reviewed all DEP Permit Exemptions listed on the DEP website www.dep.state.pa.us .
 In addition, federal agencies must provide: Measures that will be taken to identify consulting parties including Native Americans. Measures that will be taken to notify and involve the public.
The information on this form is needed to determine whether potential historic or archaeological resources are present. Additional historic information or investigation may be requested to determine the significance of the resources or the effects of the project on those resources. Form and attachments must be submitted by mail. Submissions via e-mail will not be accepted.
Signature Block
Applicant's Signature Date

Please Print and Mail Completed Form and Required Information to:

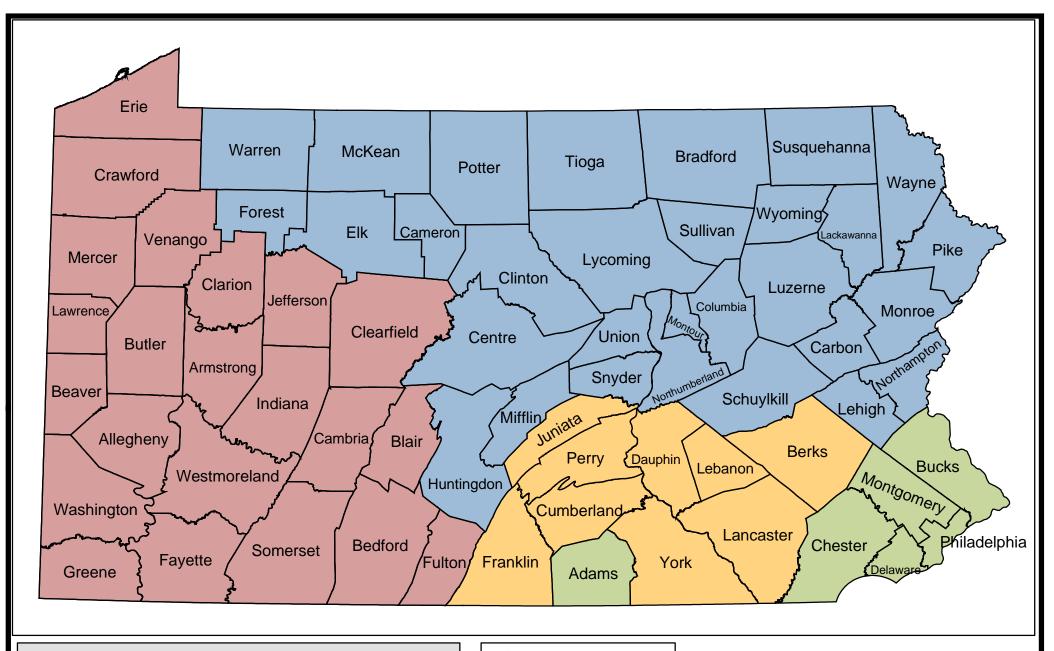
PA Historical & Museum Commission Bureau for Historic Preservation 400 North Street Commonwealth Keystone Building 2nd Floor Harrisburg, PA 17120-0093

Annex IV.A.6-G2. Archaeological Record of Disturbance

ER#		
DATE .	11/27/2009	

Record of Disturbance Form

(submit after initial field view, Phase IA Investigation, or Phase I Investigation)


Project Name &/or Ag	ency Tracking #: _		
Agency: Appli	cant:		
Preparers Name and a	affiliation:		
Date Prepared:			
Project Area County/N	Municipality (list all)		
County	Mun	icipality	
ect Setting: (check all	that annly)		
urban/suburban;			
upland;		☐stable terrace)	
7.5" USGS Quadrangle(s	s) Name (list all):		
Name		Date	
Physiographic Zone		13 compiled by W.D. Se	
Physiographic Zone Project Area Drainage(s)	, (list all) (Sub-basin	and Watershed can be o	btained from CR
Physiographic Zone			
Physiographic Zone Project Area Drainage(s)	, (list all) (Sub-basin	and Watershed can be o	btained from CR
Physiographic Zone Project Area Drainage(s) Sub-basin	, (list all) (Sub-basin	and Watershed can be o	btained from CR
Physiographic Zone Project Area Drainage(s) Sub-basin C Field Conditions:	, (list all) (Sub-basin Watershed	and Watershed can be o	btained from CR
Physiographic Zone Project Area Drainage(s) Sub-basin c Field Conditions: (Text fields will expand a	Watershed as needed. Please be	and Watershed can be o	btained from CR Minor Strea
Physiographic Zone Project Area Drainage(s) Sub-basin c Field Conditions: (Text fields will expand a	Watershed as needed. Please be ea in hectares:	and Watershed can be o Major Stream complete)	btained from CR Minor Strea
Physiographic Zone Project Area Drainage(s) Sub-basin C Field Conditions: (Text fields will expand a	watershed Watershed as needed. Please be ea in hectares: PE / Project Area:	and Watershed can be o Major Stream complete)	btained from CR Minor Strea
Physiographic Zone Project Area Drainage(s) Sub-basin c Field Conditions: (Text fields will expand a Area of APE / Project Area General Description of A	watershed Watershed as needed. Please be ea in hectares: PE / Project Area: t / Impact:	and Watershed can be o Major Stream complete)	btained from CR Minor Strea
Physiographic Zone Project Area Drainage(s) Sub-basin C Field Conditions: (Text fields will expand a Area of APE / Project Area General Description of Arype of Proposed Project Date of field investigation	watershed Watershed as needed. Please be ea in hectares: PE / Project Area: t / Impact: n(s):	and Watershed can be o Major Stream complete) Hectares tested:	btained from CR Minor Strea
Physiographic Zone Project Area Drainage(s) Sub-basin C Field Conditions: (Text fields will expand a Area of APE / Project Area General Description of Arype of Proposed Project	watershed Watershed as needed. Please be ea in hectares: PE / Project Area: t / Impact: n(s):	and Watershed can be o Major Stream complete) Hectares tested:	btained from CR Minor Strea
Physiographic Zone Project Area Drainage(s) Sub-basin C Field Conditions: Text fields will expand a Area of APE / Project Area General Description of A Type of Proposed Project Date of field investigation Description of Field Conditions	watershed By Samuel Watershed	and Watershed can be o Major Stream complete) Hectares tested:	btained from CR Minor Strea
Physiographic Zone Project Area Drainage(s) Sub-basin C Field Conditions: (Text fields will expand a Area of APE / Project Area General Description of Arype of Proposed Project Date of field investigation Description of Field Conductors and Conductors are conducted by the Conductors a	watershed By Samuel Watershed	and Watershed can be o Major Stream complete) Hectares tested:	btained from CR Minor Strea
Physiographic Zone Project Area Drainage(s) Sub-basin C Field Conditions: (Text fields will expand a Area of APE / Project Area General Description of A Type of Proposed Project Date of field investigation Description of Field Conditions	watershed Watershed as needed. Please be ea in hectares: PE / Project Area: t / Impact: n(s): ditions and Disturbance:	and Watershed can be o Major Stream complete) Hectares tested:	Minor Strea

Page 1 of 2 BHP 2-03 11/08

Record of Disturbance Form	ER#	DATE 11/27/2009
☐ Informant Data ☐ Surface Survey ☐ Test Units Other:	☐ Historic Records/Ma ☐ Geomorphological B ☐ Geomorphological T	Sorings STPs
Professional Geomorpholo	ogist was Present or	Not Present During Field Investigations
Name: Affiliation	on:	
Formal Geomorphological	Report Prepared: Yes	s 🗆 No
·	· · · —	
5. Previously Recorded Archa	eological Sites within A	PE / Project Area:
PASS Site Number	Particular disturbance in t	this area
6. Required Attachments:		
·	Map delineating APE / Pro	piect Area
		orientation of photographs
At least two (2) suppo	rting photographs with de	scriptions of view and view direction
☐ Engineering / Project F		
☐ Geomorphological Rep	ort it prepared ition profiles and description	ons
Kepresentative excava	tion promes and description	313
List all other attachm	nents to this Record of Dis	turbance Form:
Attachment Type		

Page 2 of 2 BHP 2-03 11/08

Annex IV.A.6-G3. Archaeological Review Map

Archaeological Review Regions

Bureau for Historic Preservation Phone (717) 783-8946 Fax (717) 772-0920

Annex IV.A.6-H. Permitting Schedule

SMETHPORT, PA DISTRICT HEATING POTENTIAL RIGHT-TO-BUILD PERMITS, APPROVALS & REVIEWS Task Name 2nd Quarter 3rd Quarter 4th Quarter ID Duration 1st Quarter 0 M1 | M2 | M3 | M4 | M5 | M6 M7 | M8 | M9 M10 | M11 | M12 Site No. 1 180 days 1 Air Quality Plan Approval/Operating Permit (PADEP) 2 180 days 3 Storage Tank Registrations/Permitting (PADEP) 90 days 4 NPDES General or Individual Permit (Construction) 180 days 44 days 5 Act 537 Sewage Facilities Planning Beneficial Use Permits 60 days 6 7 Highway Work Permit 90 days 8 Site Plan/Subdivision Approvals 90 days 9 Site No. 2 231 days Section 404 Permit (USACE) 10 180 days **III** Section 401 WQ Certification (PADEP) 1 day 11 111 160 days 111 Water Obst. & Encr. Permit (PADEP) 12 Air Quality Plan Approval/Operating Permit (PADEP) 180 days 13 14 Storage Tank Registrations/Permitting (PADEP) 90 days 180 days 15 NPDES General or Individual Permit (Construction) 16 Act 537 Sewage Facilities Planning 44 days 17 Beneficial Use Permits 60 days Highway Work Permit 90 days 18 19 Site Plan/Subdivision Approvals 90 days **III** 🛞 20 111 Floodplain Development Permit 90 days Site No. 3 180 days 21 Air Quality Plan Approval/Operating Permit (PADEP) 180 days 22 1 23 Storage Tank Registrations/Permitting (PADEP) 90 days NPDES General or Individual Permit (Construction) 24 180 days 25 Act 537 Sewage Facilities Planning 44 days 26 Beneficial Use Permits 60 days 27 Highway Work Permit 90 days 28 Site Plan Approval 90 days Task Milestone **External Tasks** Project: Permitting Schedule.mpp Split External Milestone Summary Date: Thu 11/12/09 **Progress Project Summary** Deadline Page 1

SMETHPORT, PA DISTRICT HEATING POTENTIAL RIGHT-TO-BUILD PERMITS, APPROVALS & REVIEWS

1 Site No. 1

Regulatory review timeframes estimated based on "Guide to DEP Permits and Other Authorizations." Start date represents submission of application package to reviewing agency. PADEP permit timeframes include 30-day preparation of "Response to Deficiency Letter." Authorization under General Permits will shorten timeframes for certain permits (*i.e.*, NPDES General Permit for Storm Water Discharges Associated with Construction Activities), but will not impact overall schedule influenced by critical path permits (*i.e.*, Air Quality Plan Approval/Operating Permit).

- 2 Air Quality Plan Approval/Operating Permit (PADEP)
 - Consultations with PA Historical & Museum Commission (Cultural Resource Notice) and PA Natural Diversity Inventory (PNDI) will be concurrent with PADEP permit review process.
- 13 Air Quality Plan Approval/Operating Permit (PADEP)
 - Consultations with PA Historical & Museum Commission (Cultural Resource Notice) and PA Natural Diversity Inventory (PNDI) will be concurrent with PADEP permit review process.
- 19 Site Plan/Subdivision Approvals

It is assumed that development of Site no. 2 will result in encroachments on federal wetlands requiring review and approval by the USSACE. It is also assumed that the site plan layout will not be finalized for approval by the municipality until the USACE has indicated that such layout is the "Least Environmentally-Damaging Practicable Alternative" (LEDPA). Consequently, site plan approval (and the concurrent floodplain development permit review) would not be completed until after issuance of the LEDPA, and perhaps the USACE permit.

22 Air Quality Plan Approval/Operating Permit (PADEP)

Consultations with PA Historical & Museum Commission (Cultural Resource Notice) and PA Natural Diversity Inventory (PNDI) will be concurrent with PADEP permit review process.

Annex IV.A.8-A Investment Costs

Annex IV.A.8-A Investment Costs

INVESTMENT COSTS

	NAGG	$\mathbf{E} \mathbf{O} \mathbf{W}$	/ER	PLANT
DIGI			131	7-11

Tecl	nnology	USD
а	separator for impurities	0
b	fuel storage and transport	974.978
С	furnace and boiler	9.082.294
d	flue gas cleaning (electrostatic precipitator)	907.479
е	emmission measurement	149.997
f	flue gas discharge	97.498
g	water treatment	224.995
h	power generation	4.274.903
i	vacuum condenser	2.759.938
i	heat exchanger/cooler	0
k	piping and heating distribution	1.349.969
ı. İ	switchgear, transformerm cabeling (Costs vom Seeger replaced by costs from OBG)*	0
m	process contropl engineering	224.995
n	compressed air generation	59.999
0	crane (turbine house)	52.499
р	fire extinguishing installation	74.998
q	building services	224.995
r	wheel loader	239.995
S	biomass hot water boiler	0
t	gas-fired peak load boiler	374.992
u	truck weigh station	52.499
V	emergency power supply	59.999
w	heat grid	0
X	transfer station	0
У	truck dumper	1.049.976
	I technology	22.236.997
1018	i tecimology	22.230.331
Rea	estate	0
1	real estate costs	200.000
2	development costs	0
Tota	l real estate	200.000
•		
	struction	0 740 045
1	buildings	3.749.915
2	civil engineering + outside facilities (Costs vom Seeger replaced by costs from OBG)*	925.000
3	Utilities (Costs vom Seeger replaced by costs from OBG)*	850.360
lota	I construction	5.525.275
Eng	ineering Services	
1	architect and engineering services	1.664.962
2	Design and Construction Management Services (costs from OBG)	177.536
3	Contingency Allowance (costs from OBG)	177.536
4		
5		
Tota		
	l engineering services	2.020.034
-		
subt	otal	29.982.306
Con	total 2,50%	29.982.306 749.558
Con	otal	29.982.306
Con Tota	total 2,50%	29.982.306 749.558

District Heating Network

1.1 Technology	USD
pipework	11.909.591
excavation costs	7.855.589
DHW charging system	2.370.160

Annex IV.A.8-A Investment Costs

customer interface (compact station)	3.394.180
Pumps	538.500
pressure maintenance	112.200
Total technology	26.180.220
1.2 Real estate	
1 real estate costs	0
2 development costs	0
Total real estate	0
1.3 Construction	
1 buildings	0
2 outside facilities	0
3 civil engineering	0
Total construction	0
1.4 Engineering Services	
1 10% of technology invest	2.618.022
	0
	0
	0
Total engineering services	2.618.022
subtotal	28.798.242
Contingencies	2,50% 719.956
Total Investment District Heating	29.518.198
Tetal lovestoned	60.050.000
Total Investment	60.250.062

^{*} For changes see Annex IV.A.5 - Draft Cost Estimate.pdf

date 02.12.2009 status DRAFT

Legend

Input field to be clarified changed items

Ti	me Assumptions			
Pr	oject start oject lifetime nd of project		2011 30 2041	
EC	CONOMICS			
Cı	urrency	fx rate		
	ference currency oject currency	EUR USD	0,6667 1,5000	
Pr Inv	ubsidies oduction Tax Credit (PTC) vestment Tax Credit ash grant			
SC	exation (corporate tax rate) CF comestic Inflation rate		0,00% 1 0,0%	
W	ACC		6,84%	
Po	ower feed-in tariff		0,13	USD/kWh
	eat price			USD/kWh
Pr	ice per REC		0	USD
Fu	iel type		Wood Chips	
Sp	pecific fuel costs		35,00	USD/t
	ossil fuel savings		3.943	l/a USD/I
гС	ossil fuel price		U	UJU/I
SD	ecific costs of ash disposal		45.00	USD/t
	ecific costs of water treatment			USD/m³
A۷	verage wages		60.000	USD/a employee

1.482.466

TECHNOLOGY

BIOMASS POWER PLANT

т	F	P	M	2
		К	IV	

 COD year
 2011

 COD quater
 2

 COD date
 01.07.2011

 Percentage of 1st year
 50%

Useful lifetime 15

Major Overhaul 100%
Intevall 15 years
Year of Major Overhaul 2026
Major Overhaul Amount 22.236.997

Features

Major Overhaul Reserve

Redundant boiler 760 h/a

Generation

Power

Average el. capacity 4.900 kW $_{\rm el}$ Operating hours 8.000 h/a Annual power generation 39.200.000 kW $_{\rm el}$ h/a

Heat

Average heat capacity $3740 \text{ kW}_{\text{th}}$ Annual heat generation $29.920.000 \text{ kW}_{\text{th}}$ h/a

Supply

Power

Average power supply capacity 600 kW Specific electricity costs 0,08 USD/kWh

<u>Fuel</u>

Average fuel power input

20.600 kW

Average calorific value of fuel

20.600 kW

Ash

annual amount of ash 3.587 t/a

Water

annual amount treated per hour 2,5 m³/h

Peak Load/ redundancy covering

annual heat capacity of fuel 3.500 MWh/a specific costs of heat capcity 40,00 USD/MWh

O&M

Major Overhaul BMPP22.236.997 USDOperating supplies37.500 USDService costs as of % of investment0,30%annual escalation0,00%personnel requirement8 employees

Admin

management 0 USD/a insurance USD/a

District Heating Network

Operation & maintenance 296.500 USD/a
Power consumption pumps 22.525 USD/a
Water losses net 4.106 USD/a

PROJECT COSTS		
for details refer to:	CAPEX	
Biomass Power Plant	30.731.864	
Technology	22.236.997	
Real estate	200.000	
Construction	5.525.275	
Engineering Services	2.020.034	
Contingencies	749.558	
District Heating Network	29.518.198	
Technology	26.180.220	
Real estate	0	
Construction	0	
Engineering Services	2.618.022	
Contingencies	719.956	
TOTAL CAPEX	60.250.062	

DEPRECIATION ON ASSETS		
for details refer to:	DEP	

Biomass Power Plant

depreciation type linear

recovery period 15 years depreciable amount 22.236.997 USD depreciation amount 1.482.466 USD

District Heating Network

depreciation type linear

recovery period 30 years depreciable amount 26.180.220 USD depreciable amount 872.674 USD

FINANCING

for details refer to:

Loans

Biomass Power Plant

Stucture

 CAPEX plus fees & charges
 31.338.133 USD

 Subsidies
 14.719.559 USD

 Total amount to be financed
 16.618.574 USD

 Bonds
 0 USD

 Senior loan A
 11.633.002 USD

 Equity
 4.985.572 USD

Debt terms

 Interest
 6,00%

 Payout
 100%

 Draw down
 1-Jan-12

 Grace period
 2 years

 Loan life
 15 years

 Number of installment
 4 per year

 Annuity
 391.387 USD

District Heating Network

Stucture

 CAPEX plus fees & charges
 30.576.881 USD

 Subsidies
 8.855.459 USD

 Total amount to be financed
 21.721.421 USD

 Equity
 6.516.426 USD

 Senior loan B
 15.204.995 USD

Debt terms

Interest6,00%Payout100%Draw down1-Jan-12

Grace period 2 years
Loan life 15 years
Number of installment 4 per year
Annuity 391.387 USD

 Senior loan A
 11.633.002

 Senior loan B
 15.204.995

 Total loan volume
 26.837.997

USD	%
0 #DIV/0!	
USD	%
26.837.997 70%	
0 0%	
11.501.999 30%	
38.339.996 100%	
70%	
	70%

Annex IV.A.8-C OPERATIONAL REVENUES AND COSTS

Annex IV.A.8-C OPERATIONAL REVENUES AND COSTS

	OPERATIONAL REVENUES AND COSTS										
	Revenues										
		year	1 2011	2 2012	3 2013	4 2014	5 2015	6 2016	7 2017	8 2018	201
		workload	50%	100%	100%	100%	100%	100%	100%	100%	1009
	Power feed-in							•			
	average capacity annual power generation	4.900 kW _{el} 39.200.000 kWh/a	2.443 19.546.301	4.900 39.200.000	4.90 39.200.00						
	Power feed-in tariff revenues from power feed-in tariff	0,1300 USD/kWh 5.096.000 USD	0 2.541.019	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.00
	revenues from power leed-in tariff	5.090.000 03D	2.541.019	5.096.000	5.090.000	5.090.000	3.090.000	5.090.000	5.090.000	5.096.000	5.030.0
	Heat sale average capacity	3740 kW _{th}	1.865	3.740	3.740	3.740	3.740	3.740	3.740	3.740	3.74
	annual heat supply	32.762.400 kWh/a	16.336.320	32.762.400	32.762.400	32.762.400	32.762.400	32.762.400	32.762.400	32.762.400	32.762.4
	heat price revenues from heat sale	0,08 USD/kWh 2.723.186 USD	1.357.863	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.1
	Cost of Sales										
.1	Consumption bound VDI 2067	verbrauchsgebunden									
•	·	8.000 h/a	2.000	8.000	8.000	0.000	0.000	0.000	0.000	0.000	0.0
	operating hours CHP average fuel power input	20.600 kW	3.989 20.600	20.600	20.600	8.000 20.600	8.000 20.600	8.000 20.600	8.000 20.600	20.600	8.00 20.60
	annual fuel energy redundant boiler	164.800.000 kWh/a 760 h/a	82.174.247 379	164.800.000 760	164.800.000 760	164.800.000 760	164.800.000 760	164.800.000 760	164.800.000 760		164.800.00 76
.1.1	Fuel supply										
	average calorific value of fuel required amount of fuel	2.300 kWh/t 71.652 t/a	35.728	71.652	71.652	71.652	71.652	71.652	71.652	71.652	71.6
	specific fuel costs	35,00 USD/t	35	35	35	35	35	35	35	35	
	costs of fuel supply	2.507.826 USD/t	1.250.478	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	2.307.826	2.507.8
.1.2	Power supply average capacity	600 kW	600	600	600	600	600	600	600	600	60
	annual power requirement	4.800.000 kWh/a	2.393.425	4.800.000	4.800.000	4.800.000	4.800.000	4.800.000	4.800.000	4.800.000	4.800.0
	specific electricity costs costs of power supply	0,08 USD/kWh 384.000 USD/kWh	0,08 191.474	0,08 384.000	0,08 384.000	0,08 384.000	0,08 384.000	0,08 384.000	0,08 384.000	384.000	384.00
1.3	Ash disposal										
. 1.0	annual amount of ash	3587 t/a	1.789	3.587	3.587	3.587	3.587	3.587	3.587	3.587	3.5
	specific costs of ash disposal costs of ash disposal	45,00 USD/t 161.415 EUR	45 80.486	45 161.415	161.4						
.1.4	Water Treatment annual amount treated per hour	2,5 m³/h	3	3	3	3	3	3	3	3	
	specific costs of water treatment costs of water treatment	6,00 USD/m ³ 120.000 USD/m ³	59.836	6 120.000	6 120.000	6 120.000	6 120.000	6 120.000	6 120.000	6 120 000	120.00
	oods of mater treatment	.20.000 002/	00.000	.20.000	.20.000	120.000	120.000	.20.000	.20.000	8.000 20.600 164.800.000 760 71.652 35 2.507.826 600 4.800.000 0.08 384.000 3.587 45 161.415 3 6 120.000 40,00409444 140.014 0 37.500 22.525 4.106 323.131 3.673.887	0.00
4.5	Book I and the desired as a consideration										
.1.5	Peak Load/ redundancy covering annual heat capacity of fuel	3500 MWh/a	1.745	3.500	3.500	3.500	3.500	3.500	3.500		3.50
	specific costs of heat capcity costs of peak load/redundancy covering	40 USD/MWh 140.014 USD	40,00409444 69.815	40,00409444 140.014	40,00409444 140.014	40,00409444 140.014	40,00409444 140.014	40,00409444 140.014	40,00409444 140.014		40,0040944 140.0 1
.1.	Major Overhaul BMPP	22.236.997 USD	0	0	0	0	0	0	0	0	
.1.	Operating supplies	37.500 USD	18.699	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.50
.1.	DHN O&M										
	Operation & maintenance Power consumption pumps	296.500 USD/a 22.525 USD/a	147.844 11.232	296.500 22.525	296.500 22.525	296.500 22.525	296.500 22.525	296.500 22.525	296.500 22.525		296.5 22.5
	Water losses net	4.106 USD/a	2.048	4.106	4.106	4.106	4.106	4.106	4.106	4.106	4.1
	DHN O&M	323.131 USD	161.123	323.131	323.131	323.131	323.131	323.131	323.131		323.13
	Consumption bound		1.831.911	3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	3.673.8
.2	Operational bound VDI 2067	bertiebsgebunden									
2.1	Salaries and wages personnel requirement	8 employees	8	8	8	8	8	8	8	8	
	labor costs	60.000 USD/a employ	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.0
	operating costs	480.000 USD	239.342	480.000	480.000	480.000	480.000	480.000	480.000	480.000	480.00
.2.2	Service and maintenance specific costs as of % of investment	0,3%	0,30%	0,30%	0,30%	0,30%	0,30%	0,30%	0,30%	0.30%	0,30
	annual escalation	0,0%									
	costs of service and maintenance	USD	45.972	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.1
2.3	Miscellaneous management	0 USD/a	0	0	0	0	0	0	0	n	
	insurance	0 USD/a	0	0	0	0	0	0	0	0	
	total miscellaneous	0 USD	0	0	0	0	0	0	0	0	
	Operational bound	USD	285.314	572.196	572.196	572.196	572.196	572.196	572.196	572.196	572.19
	Cost of Sales		2.117.225	4.246.082	4.246.082	4.246.082	4.246.082	4.246.082	4.246.082	4.246.082	4.246.08
			2.117.223	- 1.240 .062					- 4.240 .062		— — 1.24 0.00
			<u> </u>								
	Operating Cash Flow	USD	1.781.657	3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	3.573.1

Annex IV.A.8-C OPERATIONAL REVENUES AND COSTS

1905 1905 1905 1905 1906															
															24 2034
						•	•				100%				100%
2.72 1.75	39.200.000	39.200.000	39.200.000	39.200.000	39.200.000	39.200.000	39.200.000	39.200.000	39.200.000	39.200.000	39.200.000	39.200.000	39.200.000	39.200.000	4.900 39.200.000
27-28-10	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000
## 272.166	32.762.400	32.762.400	32.762.400	32.762.400	32.762.400	32.762.400	32.762.400	32.762.400	32.762.400	32.762.400	32.762.400	32.762.400	32.762.400	32.762.400	3.740 32.762.400
2009 2009															2.723.186
2009 2009															
71.00 740 740 740 740 740 740 740 740 740 7	20.600	20.600	20.600	20.600	20.600	20.600	20.600	20.600	20.600	20.600	20.600	20.600	20.600	20.600	8.000 20.600
2-97-280	164.800.000 760														164.800.000 760
2.507.806															71.652 35
480,000															2.507.826
384.000 384.0000 384.0000 384.0000 384.0000 384.0000 384.0000 384.0000 384.0000 384.0000 384.0000 384.0000 384		4.800.000				4.800.000	4.800.000	4.800.000				4.800.000		4.800.000	600 4.800.000
46															0,08 384.00
161.415															3.587
120.000 120.00															161.41
3.500 3.500	6	6	6	6	6	6	6	6	6	6	6	6	6	6	3
0.00409444 40,00409444 40,00409444 40,00409444 40,00409444 40,0040944 40,0040944 40,0040944 40,0040944 40,0040944 40,0040944 40,0040944 40,0040944 40,0040944 40,0040944 40,0040944 40,0040944 40,0040944 40,0040944 40,0040944 40,0040944 40,0040944 40,004094 40,004094 40,004094 4	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000
37.500 37	10,00409444	40,00409444	40,00409444	40,00409444	40,00409444	40,00409444	40,00409444	40,0040944	40,0040944	40,0040944	40,0040944	40,0040944	40,0040944	40,0040944	3.50 40,004094 140.01
296.500 296.500 <t< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>22.236.997</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td></t<>	0	0	0	0	0	0	22.236.997	0	0	0	0	0	0	0	
22.525	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.50
323.131 323.13	22.525	22.525	22.525	22.525	22.525	22.525	22.525	22.525	22.525	22.525	22.525	22.525	22.525	22.525	296.50 22.52 4.10
60.000 60.0000 60.0000 60.000 60.000 60.000 60.0000 60.000 60.000 60.000	323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.13 ² 3.673.88 ⁷
60.000 60.0000 60.0000 60.000 60.000 60.000 60.0000 60.000 60.000 60.000															
92.196 92.196 92.196 92.196 92.196 92.196 92.196 92.196 92.196 92.196 92.196 92.196 92.196 92.196 92.196 92.196 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000 480.00 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,30%	0,30%	0,30%	0,30%	0,30%	0,30%	0,30%	0,30%	0,30%	0,30%	0,30%	0,30%	0,30%	0,30%	0,30%
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.19
572.196 572.196 572.196 572.196 572.196 572.196 572.196 572.196 572.196 572.196 572.196 572.196 572.196 572.196	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,
1010 000 1010 000 1010 000 1010 000 1010 000 1010 000															572.19

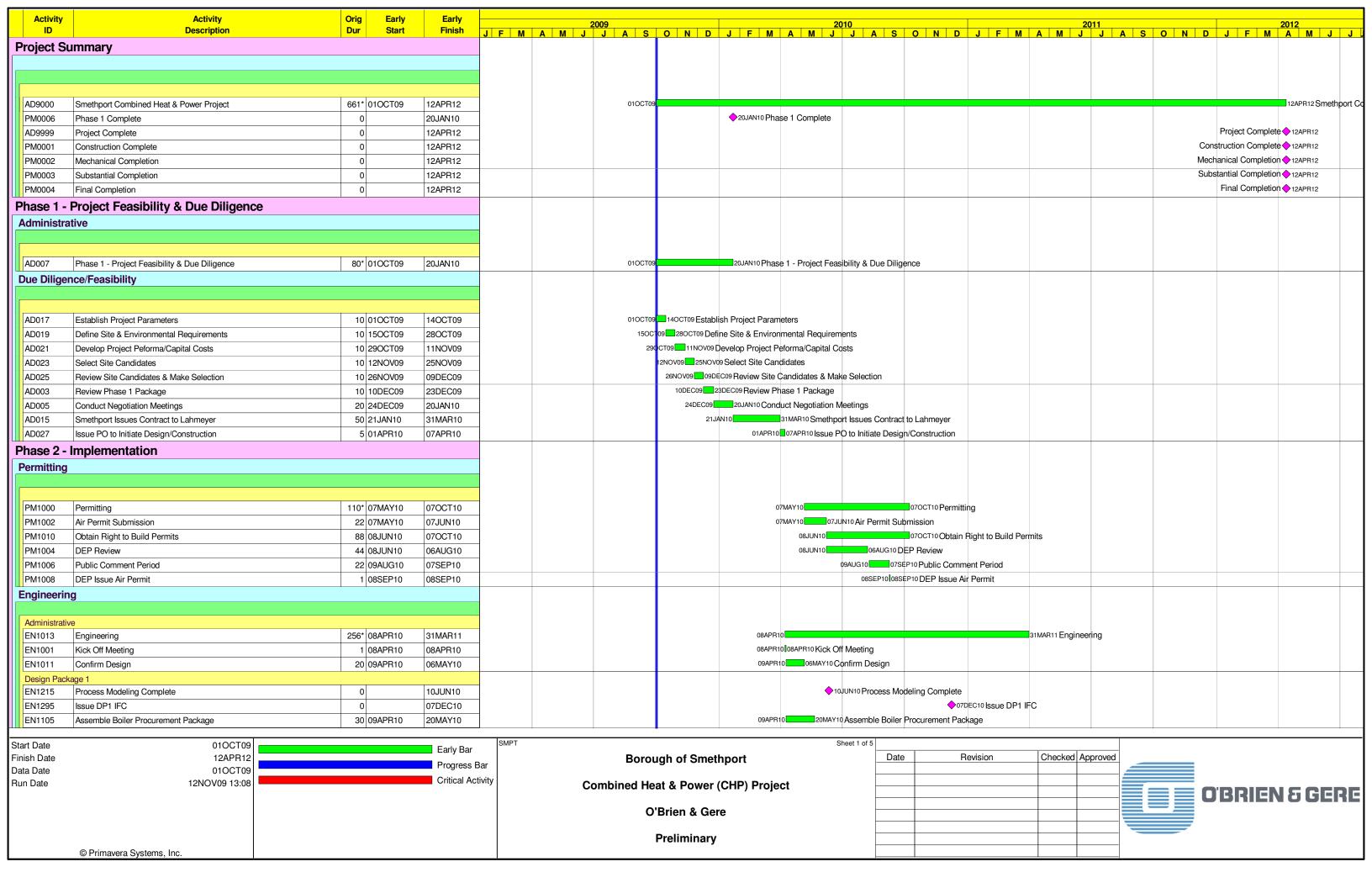
Annex IV.A.8-C OPERATIONAL REVENUES AND COSTS

25	26	27			30	31
2035 100%	2036 100%	2037 100%	2038 100%	2039 100%	2040 100%	2041 50%
39.200.000	39.200.000	39.200.000	39.200.000	39.200.000	4.900 39.200.000	19.653.699
			5.096.000		5.096.000	
					3.740 32.762.400	
2.723.186	0	0	0	0	2.723.186	0
8.000	8.000	8.000	8.000	8.000	8.000 20.600	4.011
164.800.000 760	164.800.000	164.800.000	164.800.000	164.800.000	164.800.000 760	82.625.753
71 652	71 652	71 652	71 652	71 652	71 652	25.024
					71.652 35 2.507.826	
2.007.1020	2.001.020	2.001.020	2.001.020	2.001.020	2.007.020	
600	600	600	600	600	600	600
4.800.000 0,08	4.800.000	4.800.000	600 4.800.000 0,08	4.800.000	4.800.000 0,08	2.406.575
384.000		384.000	384.000	384.000		
3.587 45	3.587 45				3.587 45	1.798 45
161.415				161.415		80.929
3	3	3	3	3 6	3	3
120.000	120.000	120.000	120.000	120.000	3 6 120.000	60.164
3.500	3.500	3.500	3.500	3.500	3.500 40,0040944	1.755
40,0040944 140.014	40,0040944 140.014	40,0040944 140.014	40,0040944 140.014	40,0040944 140.014	40,0040944 140.014	40,0040944 70.199
0	0	0	0	0	0	0
37.500	37.500	37.500	37.500	37.500	37.500	18.801
296.500 22.525	296.500 22.525	296.500 22.525	296.500 22.525	296.500 22.525	296.500 22.525	148.656 11.293
4.106 323.131	4.106 323.131	4.106 323.131	4.106 323.131	4.106 323.131	4.106 323.131	2.059 162.008
3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	1.841.976
8 60.000	8 60.000	8 60.000	8 60.000	8 60.000	8 60.000	8 60.000
480.000	480.000	480.000	480.000	480.000	480.000	240.658
0,30%	0,30%	0,30%	0,30%	0,30%	0,30%	0,30%
92.196	92.196	92.196	92.196	92.196	92.196	46.224
0	0	0	0	0	0	0
0	0	0	0	0	0	0
572.196	572.196	572.196	572.196	572.196	572.196	286.882
4.246.082	4.246.082	4.246.082	4.246.082	4.246.082	4.246.082	2128857,68
3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	1.791.447

Annex IV.A.8-D CASH FLOW STATEMENT

Annex IV.A.8-D CASH FLOW STATEMENT

	CASH FLOW STATEMENT								
	Units: USD								
				2011	2012	2013	2014	2015	2016
	Start of Period			1-Jul-11	1-Jan-12	1-Jan-13	1-Jan-14	1-Jan-15	1-Jan-16
	End of Period		1-Jan-11	31-Dec-11	31-Dec-12	31-Dec-13	31-Dec-14	31-Dec-15	31-Dec-16
	Construction period			100,0%	0,0%	0,0%	0,0%	0,0%	0,0%
	Operational period			49,9%	100,0%	100,0%	100,0%	100,0%	100,0%
	Operational year			1	2	3	4	5	6
	End of period			2011	2012	2013	2014	2015	2016
1	Cashflow from Operating Activities	67.883.971		171.378	1.962.824	1.992.811	2.063.793	2.139.033	2.218.788
1.1	Cash Inflow	234.575.591		3.898.882	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186
1.1.1	Sales	234.575.591		3.898.882	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186
1.1.1.1	Power feed-in	152.880.000		2.541.019	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000
1.1.1.2		81.695.591		1.357.863	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186
1.1.1.3	3 (,	0		0	0	0	0	0	0
	REC sales	0		0	0	0	0	0	0
1.2	Cash Outflow	166.691.620		3.727.504	5.856.362	5.826.375	5.755.394	5.680.153	5.600.399
1.2.1	Cost of Sales	132.453.597		1.831.911	3.673.887	3.673.887	3.673.887	3.673.887	3.673.887
1.2.1.1	Fuel supply	75.234.783		1.250.478	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826
1.2.1.2	117	11.520.000		191.474	384.000	384.000	384.000	384.000	384.000
1.2.1.3		4.842.450		80.486	161.415	161.415	161.415	161.415	161.415
1.2.1.4		3.600.000		59.836	120.000	120.000	120.000	120.000	120.000
1.2.1.5	, , , , , , , , , , , , , , , , , , ,	4.200.430		69.815	140.014	140.014	140.014	140.014	140.014
1.2.1.6	3 - 11	1.125.000		18.699	37.500 0	37.500 0	37.500	37.500 0	37.500
1.2.1.7	•	22.236.997		0	-	-	0	-	0 323.131
1.2.1.8		9.693.938 17.165.868		161.123 285.314	323.131 572.196	323.131 572.196	323.131 572.196	323.131 572.196	572.196
1.2.2 1.2.2.1	Selling & Administrative Expenses	14.400.000		285.314 239.342	480.000	480.000	480.000	480.000	480.000
1.2.2.1	Salaries and wages Service and maintenance	2.765.868		45.972	92.196	92.196	92.196	92.196	92.196
	Miscellaneous	2.703.000		45.972	92.190	92.190	92.190	92.190	92.190
1.2.2.3 1.2.3	Interest Paid	17.072.156		1.610.280	1.610.280	1.580.293	1.509.311	1.434.071	1.354.317
1.2.3.1		6.963.671		697.980	697.980	667.993	636.207	602.513	566.798
_	SENIOR LOAN A SENIOR LOAN B	10.108.485		912.300	912.300	912.300	873.105	831.558	787.519
1.2.3.2	Bonds Paid	0.100.403		912.300 0	912.300 0	912.500 0	073.103 0	031.330 0	707.519 0
1.2.3.3		0		0	0	0	0	0	0
1.2.3.4		0		0	0	0	0	0	0
1.2.3.5		0		0	0	0	0	0	0
1.2.5	Income Taxes			ŏ	ŏ	ő	ŏ	ŏ	õ
	Increasing in Cash	67.883.971		171,378	1.962.824	1.992.811	2.063.793	2.139.033	2.218.788
	Cash in Beginning	858.369.542		0	171.378	2.134.202	4.127.013	6.190.806	8.329.839
				-	2.134.202				


Annex IV.A.8-D CASH FLOW STATEMENT

2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
1-Jan-17	1-Jan-18	1-Jan-19	1-Jan-20	1-Jan-21	1-Jan-22	1-Jan-23	1-Jan-24	1-Jan-25	1-Jan-26	1-Jan-27	1-Jan-28	1-Jan-29
31-Dec-17	31-Dec-18	31-Dec-19	31-Dec-20	31-Dec-21	31-Dec-22	31-Dec-23	31-Dec-24	31-Dec-25	31-Dec-26	31-Dec-27	31-Dec-28	31-Dec-29
0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
7	8	9	10	11	12	13	14	15	16	17	18	19
2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
2.303.327	2.392.940	2.487.929	2.588.617	2.695.347	2.808.480	2.928.401	3.055.518	3.190.262	-18.836.108	3.484.488	3.567.787	3.572.785
7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186
7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186
5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000
2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
5.515.859	5.426.247	5.331.258	5.230.569	5.123.840	5.010.706	4.890.785	4.763.668	4.628.925	26.655.295	4.334.698	4.251.399	4.246.401
3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	25.910.883	3.673.887	3.673.887	3.673.887
2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826
384.000	384.000	384.000	384.000	384.000	384.000	384.000	384.000	384.000	384.000	384.000	384.000	384.000
161.415	161.415	161.415	161.415	161.415	161.415	161.415	161.415	161.415	161.415	161.415	161.415	161.415
120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000
140.014	140.014	140.014	140.014	140.014	140.014	140.014	140.014	140.014	140.014	140.014	140.014	140.014
37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500
0	0	0	0	0	0	0	0	0	22.236.997	0	0	0
323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131
572.196 480.000	572.196 480.000	572.196 480.000	572.196 480.000	572.196 480.000	572.196 480.000	572.196 480.000	572.196 480.000					
92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196
92.190	92.190	92.190	92.190	92.190	92.190	92.190	92.190	92.190	92.190	92.190	92.190	92.190
1.269.777	1.180.164	1.085.175	984.487	877.758	764.624	644.703	517.586	382.842	172.216	88.616	5.317	319
528.940	488.810	446.273	401.183	353.388	302.726	249.023	192.099	131.759	0	0	0	0
740.837	691.354	638.903	583.304	524.369	461.899	395.680	325.487	251.084	172.216	88.616	5.317	319
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
2.303.327	2.392.940	2.487.929	2.588.617	2.695.347	2.808.480	2.928.401	3.055.518	3.190.262	-18.836.108	3.484.488	3.567.787	3.572.785
10.548.627	12.851.954	15.244.894	17.732.822	20.321.439	23.016.786	25.825.266	28.753.667	31.809.185	34.999.447	16.163.339	19.647.827	23.215.614
12.851.954	15.244.894	17.732.822	20.321.439	23.016.786	25.825.266	28.753.667	31.809.185	34.999.447	16.163.339	19.647.827	23.215.614	26.788.399

Annex IV.A.8-D CASH FLOW STATEMENT

203	0 2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
1-Jan-3	0 1-Jan-31	1-Jan-32	1-Jan-33	1-Jan-34	1-Jan-35	1-Jan-36	1-Jan-37	1-Jan-38	1-Jan-39	1-Jan-40	1-Jan-41
31-Dec-3	0 31-Dec-31	31-Dec-32	31-Dec-33	31-Dec-34	31-Dec-35	31-Dec-36	31-Dec-37	31-Dec-38	31-Dec-39	31-Dec-40	31-Dec-41
0.00		0.00/	0.00/	0.00/	0.00/	0.00/	0.00/	0.00/	0.00/	0.00/	0.00/
0,09 100,09	,	0,0% 100,0%	0,0% 100,0%	0,0% 100,0%	0,0% 100,0%	0,0% 100,0%	0,0% 100,0%	0,0%	0,0% 100,0%	0,0%	0,0% 50,1%
100,03		100,0%	23	24	25	26	27	100,0% 28	29	100,0% 30	30,1%
2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
3.573.08		3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	1.791.447
7.819.18		7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	3.920.304
7.819.18		7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	7.819.186	3.920.304
5.096.00		5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	5.096.000	2.554.981
2.723.18		2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	2.723.186	1.365.324
	0 0	0	0	0 0	0	0	0	0 0	0	0	0
4.246.10		4.246.082	4.246.082	4.246.082	4.246.082	4.246.082	4.246.082	4.246.082	4.246.082	4.246.082	2.128.858
3.673.88		3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	3.673.887	1.841.976
2.507.82		2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	2.507.826	1.257.348
384.00		384.000	384.000	384.000	384.000	384.000	384.000	384.000	384.000	384.000	192.526
161.41	5 161.415	161.415	161.415	161.415	161.415	161.415	161.415	161.415	161.415	161.415	80.929
120.00	0 120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	120.000	60.164
140.01		140.014	140.014	140.014	140.014	140.014	140.014	140.014	140.014	140.014	70.199
37.50		37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500	37.500	18.801
	0 0	0	0	0	0	0	0	0	0	0	0
323.13		323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131	323.131	162.008
572.19		<i>572.196</i>	572.196	572.196	572.196	572.196	<i>572.196</i>	572.196	572.196	572.196	286.882
480.00 92.19		480.000 92.196	240.658 46.224								
	0 92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	92.196	46.224
1:	-	o	Ö	Õ	Õ	o	o	o	o	Õ	Õ
	0 0	0	0	0	0	0	0	0	0	0	0
1	9 1	0	0	0	0	0	0	0	0	0	0
	0 0	0	0	0	0	0	0	0	0	0	0
	0 0	0	0	0	0	0	0	0	0	0	0
	0 0	0	0	0	0	0	0	0	0	0	0
	0 0	0	0	0	0	0	0	0	0	0	0
	0 0	0	0	0	0	0	0	0	0	0	0
3.573.08		3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	3.573.104	1.791.447
26.788.39		33.934.587	37.507.691	41.080.795	44.653.899	48.227.003	51.800.108	55.373.212	58.946.316	62.519.420	66.092.524
30.361.48	4 33.934.587	37.507.691	41.080.795	44.653.899	48.227.003	51.800.108	55.373.212	58.946.316	62.519.420	66.092.524	67.883.971

Annex V.C Project Schedule

Activity	Activity	Orig Early	Early	2000	000	0040
ID	Description	Dur Start	Finish	J F M A M J J A S	O N D J F M A M J	010
EN1115	Assemble Turbine GeneratorProcurement Package	30 09APR10	20MAY10		09APR10 20MAY10	Assemble Turbine GeneratorProcurement Package
EN1125	Assemble Material Handling Procurement Package	30 09APR10	20MAY10		09APR10 20MAY10	Assemble Material Handling Procurement Package
EN1005	Develop Process Flow Diagrams	15 21MAY10	10JUN10		21MAY10 10J	JUN10 Develop Process Flow Diagrams
EN1085	Perform Heat & Mass Balances	15 21MAY10	10JUN10		21MAY10 10J	JUN10 Perform Heat & Mass Balances
EN1095	Perform Utility Balance	15 21MAY10	10JUN10		21MAY10 10J	JUN10 Perform Utility Balance
EN1205	Develop & Finalize P&ID's	75 11JUN10	23SEP10		11JUN10	23SEP10 Develop & Finalize P&ID's
EN1305	Assemble Condenser Procurement Package	10 11JUN10	24JUN10		11JUN102	24JUN10 Assemble Condenser Procurement Package
EN1135	Develop Site & Building General Arrangement	60 25JUN10	16SEP10		25JUN10	16SEP10 Develop Site & Building General Arrangement
EN1155	Develop Master Electrical One-line	20 23JUL10	19AUG10		23J	JUL10 19AUG10 Develop Master Electrical One-line
EN1165	Develop 4160 & 480 V One-line	20 30JUL10	26AUG10		30	0JUL10 26AUG10 Develop 4160 & 480 V One-line
EN1145	Develop Control System Descriptions	20 06AUG10	02SEP10		O C	06AUG10 02SEP10 Develop Control System Descriptions
EN1175	Develop Relay & Metering One-line	20 27AUG10	23SEP10			27AUG10 23SEP10 Develop Relay & Metering One-line
EN1185	Develop Electrical System Description	20 24SEP10	21OCT10			24SEP10 21OCT10 Develop Electrical System Description
EN1195	Assemble &Submit for Review Documents for DP1	3 22OCT10	26OCT10			220CT10 260CT10 Assemble &Submit for Review Documents for DP1
EN1275	Review DP1	10 27OCT10	09NOV10			270CT10 09NOV10 Review DP1
EN1285	Incorporate Comments into Design	20 10NOV10	07DEC10			10NOV10 07DEC10 Incorporate Comments into Design
Design Pack						
EN1365	Issue DP2 IFC	0	31MAR11			♦ 31MAR11 Issue DP2 IFC
EN1059	Develop Site/Civil, Site Electrical, UG Utility	60 23JUL10	14OCT10		23,1	JUL10 140CT10 Develop Site/Civil, Site Electrical, UG Utility
EN1069	Develop Structural/Architectural Package	80 20AUG10	09DEC10			20AUG10 09DEC10 Develop Structural/Architectural Package
EN1039	Develop Ancillary Equipment Procurement Packages	80 20AUG10	09DEC10			20AUG10 09DEC10 Develop Ancillary Equipment Procurement Packages
EN1049	Develop Building Mechanical Package - HVAC & Plu	40 17SEP10	11NOV10			17SEP10 11NOV10 Develop Building Mechanical Package - HVAC & Plu
EN1019	Develop Demolition & Deep Foundation Package	60 22OCT10	13JAN11			220CT10 13JAN11 Develop Demolition & Deep Foundation Package
EN1029	Develop Process Mechanical/Piping Package	80 22OCT10	10FEB11			220CT10 10FEB11 Develop Process Mechanical/Piping Package
EN1315	Assemble &Submit for Review Documents for DP1	5 11FEB11	17FEB11			11FEB11 ■17FEB11 Assemble &Submit for Review Documents for DP1
EN1335	Review DP2	10 18FEB11	03MAR11			18FEB11 03MAR11 Review DP2
EN1355	Incorporate Comments into Design	20 04MAR11	31MAR11			04MAR1131MAR11 Incorporate Comments into Design
Design Pack	age 3					
EN1385	Issue DP3 IFC	0	31MAR11			♦31MAR11 Issue DP3 IFC
EN1025	Develop Building Electrical Package - Light & Po	60 27AUG10	18NOV10			27AUG10 18NOV10 Develop Building Electrical Package - Light & Po
EN1009	Develop Process Electrical Package	80 24SEP10	13JAN11			24SEP10 13JAN11 Develop Process Electrical Package
EN1035	Develop Instrumentation & Control Package - DCS	60 19NOV10	10FEB11			19NOV10 10FEB11 Develop Instrumentation & Control Package - DCS
EN1325	Assemble &Submit for Review Documents for DP3	5 11FEB11	17FEB11			11FEB11 ☐ 17FEB11 Assemble &Submit for Review Documents for DP3
EN1345	Review DP3	10 18FEB11	03MAR11			18FEB11 03MAR11 Review DP3
EN1375	Incorporate Comments into Design	20 04MAR11	31MAR11			04MAR1131MAR11 Incorporate Comments into Design
Close Out Do						
EN1045	Develop Post-Construction Package	60 01APR11	23JUN11			01APR11 23JUN11 Develop Post-Construction Package
Procureme	ent					
Process Equip	pment					
Boiler Syster	n					
PR1001	Bid & Award Boiler System	30 21MAY10	01JUL10			01JUL10 Bid & Award Boiler System
PR1017	Submit & Approve Preliminary Boiler System Info	40 02JUL10	26AUG10		02JUL10	333311331 4473 3333111111111111111111111
PR1035	Fab & Deliver Boiler System - Initial	140 02JUL10	13JAN11		02JUL10	
PR1137	Submit & Approve Detailed Boiler System Info	40 27AUG10	21OCT10			27AUG10 210CT10 Submit & Approve Detailed Boiler System Info
PR1055	Complete Boiler Delivery	50 14JAN11	24MAR11			14JAN11 24MAR11 Complete Boiler Delivery
	erator System					
	Bid & Award Turbine Generator	30 21MAY10	01JUL10	_		01JUL10 Bid & Award Turbine Generator
PR1019	Submit & Approve PreliminaryTurbine Generator Sy	30 02JUL10	12AUG10	_		12AUG10 Submit & Approve PreliminaryTurbine Generator Sy
PR1139	Submit & Approve DetailedTurbine Generator Syste	40 13AUG10	07OCT10	_		13AUG10 07OCT10 Submit & Approve DetailedTurbine Generator Syste
PR1057	Fab & Deliver Turbine Generator System	168 13AUG10	05APR11			13AUG10 05APR11 Fab & Deliver Turbine Generator System
Material Han						
PR1005	Bid & Award Material Handling Procurement Packag	30 21MAY10	01JUL10	_		01JUL10 Bid & Award Material Handling Procurement Packag
PR1021	Submit & Approve Preliminary Material Handling S	40 02JUL10	26AUG10		02JUL10	0 Submit & Approve Preliminary Material Handling S
PR1041	Submit & Approve Detailed Material Handling Syst	40 27AUG10	21OCT10			27AUG10 21OCT10 Submit & Approve Detailed Material Handling Syst
PR1051	Fab & Delivery Material Handling System - Initia	60 22OCT10	13JAN11			220CT10 13JAN11 Fab & Delivery Material Handling System - Initia
PR1039	Fab & Deliver Material Handling System - Final	100 14JAN11	02JUN11			14JAN11 02JUN 11 Fab & Deliver Material Handling System - Final
Condenser						<u> </u>
PR1033	Bid & Award Condenser	20 25JUN10	22JUL10		25JUN10	22JUL10 Bid & Award Condenser
	·	·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·	

Activity	Activity	Orig Early	Early	
ID	Description	Dur Start	Finish	
PR1043	Submit & Approve Condenser - Preliminary	40 23JUL10	16SEP10	23JUL10 16SEP10 Submit & Approve Condenser - Preliminary
PR1053	Submit & Approve Condenser - Detailed	40 17SEP10	11NOV10	17SEP10 11NOV10 Submit & Approve Condenser - Detailed
PR1063	Fab & Deliver Condenser	120 12NOV10	28APR11	12NOV10 28APR11 Fab & Deliver Condenser
Process Me				
PR1009	Bid & Award Process Mechanical	20 11FEB11	10MAR11	11FEB11 10MAR11 Bid & Award Process Mechanical
Process Pip				
PR1095	Bid & Award Process Piping	30 11FEB11	24MAR11	11FEB11 24MAR11 Bid & Award Process Piping
Process Ele				
PR1007	Bid & Award Process Electrical	30 14JAN11	24FEB11	14JAN11 24FEB11 Bid & Award Process Electrical
Instrumenta	tion & Control			
PR1023	Bid & Award Distributed Control System (DCS)	40 11FEB11	07APR11	11FEB11 07APR11 Bid & Award Distributed Control System (DCS)
PR1029	Submit & Approve Preliminary DCS Components	66 08APR11	08JUL11	08APR11 08JUL11 Submit & Approve Preliminary DCS Components
PR1037	Fab & Deliver DCS Components	120 20MAY11	03NOV11	20MAY11 03NOV11 Fab & Deliver DCS Components
PR1129	Submit & Approve Detailed DCS Components	80 11JUL11	28OCT11	Submit & Approve Detailed DCS Components 11JUL 11 280CT11
Ancillary Eq	· · · · · · · · · · · · · · · · · · ·	00 1.00211		
PR1167	Bid & Award Ancillary Equipment	60 10DEC10	03MAR11	10DEC10 03MAR11 Bid & Award Ancillary Equipment
PR1157	Submit & Approve Ancillary Equipment	80 04MAR11	23JUN11	04MAR11 23JUN11 Submit & Approve Ancillary Equipment
PR1147	Fabricate & Deliver Ancillary Equipment	120 29APR11	13OCT11	29APR11 13OCT11 Fabricate & Deliver Ancillary Equipment
Infrastructure		120 23AI III I	1000111	
Site				
PR1011	Bid & Award Site/Civil Package	30 03SEP10	14OCT10	03SEP10 14OCT10 Bid & Award Site/Civil Package
Concrete		00 000L1 10	1.100110	
PR1013	Bid & Award Concrete Foundation & Slabs	30 12NOV10	23DEC10	12NOV10 23DEC10 Bid & Award Concrete Foundation & Slabs
Structural	Did a / Wald Golfold Foundation a Glass	00 12110110	2002010	
PR1047	Bid & Award Structural Steel	30 12NOV10	23DEC10	12NOV10 23DEC10 Bid & Award Structural Steel
PR1067	Bid & Award Deep Foundations	30 17DEC10	27JAN11	17DEC10 27JAN11 Bid & Award Deep Foundations
PR1031	Submit & Approve Structural Steel	30 24DEC10	03FEB11	24DEC10 03FEB11 Submit & Approve Structural Steel
PR1045	Fab & Deliver Structural Steel	80 04FEB11	26MAY11	04FEB11 26MAY11 Fab & Deliver Structural Steel
		00 04FEBTT	ZOIVIATTI	20WAT 11 ab & Deliver Structural Steel
Architectura PR1015	Bid & Award Architectural	30 15OCT10	25NOV10	15OCT10 25NOV10 Bid & Award Architectural
		30 1300110	23110110	1000 TO LEGISTON OF THE COURT O
Building Ele PR1059	Bid & Award Bldg Electrical	30 19NOV10	30DEC10	19NOV10 30DEC10 Bid & Award Bldg Electrical
Building Me	-	30 19100110	SODECTO	15/10/10 Bid & Award Bidg Electrical
	Bid & Award Bldg Mechanical	30 12NOV10	23DEC10	12NOV10 23DEC10 Bid & Award Bldg Mechanical
Constructi		00 12140410	15555010	
Administrativ				
Administrativ				
CN9999	Construction Complete	0	12APR12	Construction Complete ♦ 12APR12
CN0000	Construction Start	0 15OCT10	1614 1116	15OCT10 ♦ Construction Start
Infrastructure		0 1300110		The state of the s
Site				
CN1210	Site Work Complete	0	25APR11	♦ 25APR11 Site Work Complete
CN1000	Mobilize Site/Civil Work	5 15OCT10	21OCT10	150CT10 210CT10 Mobilize Site/Civil Work
CN1180	Clear Site	20 22OCT10	18NOV10	220¢T10 18NOV10 Clear Site
CN1130	Construct New Plant Access Road	30 22OCT10	02DEC10	220CT10 02DEC10 Construct New Plant Access Road
CN1142	Construct District Heating Connection	132 220CT10	25APR11	220CT10 25APR11 Construct District Heating Connection
CN1142 CN1140	Install Site Utilities	40 19NOV10	13JAN11	19NOV10 13JAN11 Install Site Utilities
CN1170	Rough Grade Process Building Area	10 19NOV10	02DEC10	19NOV10 02DEC10 Rough Grade Process Building Area
CN1170	Rough Grade Material Handling Area	10 14JAN11	27JAN11	14JAN11 27JAN11 Rough Grade Material Handling Area
CN1500			10MAR11	28JAN11 100MAR11 Install Piling for ProcessBldg, Boiler & Turbine
	Install Piling for ProcessBldg, Boiler & Turbine	30 28JAN11	_	28JAN11 24FEB11 Install Piling for Material Handling
CN1510	Install Piling for Material Handling	20 28JAN11	24FEB11	200/ANTI 24FEDTI INSIAII PIIING IOI MALENAI PANUING
Concrete	Consecto Complete		20 11 1014 4	◆30JUN11 Concrete Complete
CN1200	Concrete Complete	0	30JUN11	
CN1010	Mobilize for Concrete Foundation & Slab Work	5 18FEB11	24FEB11	18FEB11 24FEB11 Mobilize for Concrete Foundation & Slab Work
CN1190	Install Material Handling Foundations & Slabs	40 25FEB11	21APR11	25FEB11 21APR11 Install Material Handling Foundations & Slabs
CN1012	Install Process Bldg Foundations and Slabs	80 11MAR11	30JUN11	11MAR11 30JUN11 Install Process Bldg Foundations and Slabs
CN1270	Install Boiler & Turbine Foundations & Slabs	60 08APR11	30JUN11	08APR11 30JUN11 Install Boiler & Turbine Foundations & Slabs

Activity	Activity	Orig Early	Early		
ID	Description	Dur Start	Finish	2009	2010
Structural	2000.1910.1	5.0		J F M A M J J A S O N D J F M A M .	J J A S O N D J F M A M J J A S O N D J F M A M J J L
CN1020	Mobilize Process Building Structural Steel	5 15APR11	21APR11	-	15APR11 21APR11 Mobilize Process Building Structural Steel
CN1280	Erect Structural Steel for Conveyor Bents	40 22APR11	16JUN11	-	22APR11 16JUN11 Erect Structural Steel for Conveyor Bents
CN1300	Erect Process Bldg Struct Steel - Boiler Area	30 03JUN11	14JUL11	-	03JUN11 14JUL11 Erect Process Bldg Struct Steel - Boiler Area
CN1290	Erect Process Bldg Struc Steel - Turbine Area	30 01JUL11	11AUG11	-	01JUL11 11AUG11 Erect Process Bldg Struc Steel - Turbine Area
	-	30 0130E11	ITAUGIT		Thousand the city Todess bing Struc Steel - Lubine Area
Architectura CN1520	Architectural Work Complete		24NOV11	-	◆24NOV11 Architectural Work Complete
CN1060	Mobilize Architectural Work	5 08JUL11	14JUL11	-	08JUL11 ■14JUL11 Mobilize Architectural Work
	Install Building Siding		25AUG11	-	15JUL11 25AUG11 Install Building Siding
CN1320	0 0	30 15JUL11		-	26AUG11 22SEP11 Install Building Roof
CN1330	Install Building Roof	20 26AUG11	22SEP11	-	Install Building Interior Partitions and Finishe 23SEP11 17NOV11
CN1310	Install Building Interior Partitions and Finishe	40 23SEP11	17NOV11		install building linehor Facultons and Finishe23SEP11 17NOV11
Building Ele		Flooring	0105011	_	CONTINUE DISCOURTS AND A STATE OF THE PROPERTY
CN1110	Mobilize Building Electrical Work	5 26AUG11	01SEP11		26AUG11 ■01SEP11 Mobilize Building Electrical Work
CN1340	Install Building Lighting	60 02SEP11	24NOV11		02SEP11 24NOV11 Install Building Lighting
CN1350	Install Building Convenience Power	60 23SEP11	15DEC11		23SEP11 15DEC11 Install Building Convenience Power
Building Me			00007::	_	
CN1530	Building Mechanical Complete	0	20OCT11	-	◆200CT11 Building Mechanical Complete
CN1100	Mobilize Building Mechanical Work	5 19AUG11	25AUG11	_	19AUG11 25AUG11 Mobilize Building Mechanical Work
CN1370	Install Building Plumbing	20 26AUG11	22SEP11		26AUG11 22SEP11 Install Building Plumbing
CN1360	Install Building HVAC	20 23SEP11	20OCT11		23SEP11 200CT11 Install Building HVAC
Process Syst					
Boiler Syste				_	
CN1380	Boiler Erection Complete	0	05APR12		Boiler Erection Complete ◆ 05APR12
CN1030	Mobilize Boiler Erector	5 01JUL11	07JUL11		01JUL11 Mobilize Boiler Erector
CN1620	Install Boiler & Combustion Sections	80 15JUL11	03NOV11		15JULI11 03NOV11 Install Boiler & Combustion Sections
CN1590	Install Ancillary Boiler Equipment	90 09SEP11	12JAN12		Install Ancillary Boiler Equipment 09SEP11 12JAN12
CN1560	Install Electrical - Boiler & Ancillary Equipmen	120 23SEP11	08MAR12		Install Electrical - Boiler & Ancillary Equipmen 23SEP11
CN1610	Install Baghouse	80 07OCT11	26JAN12		07OCT11 26JAN12 Install Baghouse
CN1580	Install Boiler Insulation & Refractory	80 04NOV11	23FEB12		Install Boiler Insulation & Refractory 04NOV11 23FEB12
CN1230	Install Boiler & Ancillary Equip I&C	90 02DEC11	05APR12		Install Boiler & Ancillary Equip &C 02DEC11 05APR12
CN1600	Install Breeching & Fans	40 02DEC11	26JAN12		02DEC11 26JAN12 Install Breeching & Fans
Turbine Ger	nerator System				
CN1400	Turbine Generator Assembly Complete	0	05JAN12		Turbine Generator Assembly Complete ◆05JAN12
CN1040	Mobilize Turbine Generator Erector	5 12AUG11	18AUG11		12AUG11 Mobilize Turbine Generator Erector
CN1660	Install Sole Plates	5 23SEP11	29SEP11		23SEP11 29SEP11 Install Sole Plates
CN1640	Set Turbine Section	5 30SEP11	06OCT11		30SEP11 ■06OCT11 Set Turbine Section
CN1630	Set Generator Section	5 07OCT11	13OCT11		07OCT11 ■13OCT11 Set Generator Section
CN1650	Align & Level Turbine Section	10 07OCT11	20OCT11		07OCT11 ■ 20OCT11 Align & Level Turbine Section
CN1550	Install Electrical - Turbine Generator & Ancilla	40 14OCT11	08DEC11		Install Electrical - Turbine Generator & Ancilla 140CT11 08DEC11
CN1720	Install Lube Oil System	15 14OCT11	03NOV11		14OCT11 03NOV11 Install Lube Oil System
CN1710	Complete Expansion Joint to Condenser	10 21OCT11	03NOV11		210CT11 3NOV11 Complete Expansion Joint to Condenser
CN1700	Align & Level Generator Section	10 04NOV11	17NOV11		04NOV11 ■ 17NOV11 Align & Level Generator Section
CN1220	Install Turbine Generator I&C	40 11NOV11	05JAN12		11NOV11 05JAN12 Install Turbine Generator I&C
CN1410	Coupling Assembly & Alignment	10 18NOV11	01DEC11		18NOV11 ☐ 01DEC11 Coupling Assembly & Alignment
Material Har	ndling System				
CN1540	Material Handling System Complete	0	12JAN12		Material Handling System Complete ♦ 12JAN12
CN1050	Erect Raw Material Handling Structures	60 03JUN11	25AUG11		03JUN11 25AUG11 Erect Raw Material Handling Structures
CN1420	Install Conveyors	40 29JUL11	22SEP11		29JUL11 22SEP11 Install Conveyors
CN1430	Install Truck Dumps	50 26AUG11	03NOV11		26AUG11 03NOV11 Install Truck Dumps
CN1450	Install Material Handling Electrical	60 23SEP11	15DEC11		23SEP11 15DEC11 Install Material Handling Electrical
CN1240	Install Material Handling I&C	30 02DEC11	12JAN12		02DEC11 12JAN12 Install Material Handling I&C
Process Me					
CN1690	Mechanical Equipment Complete	0	15DEC11		15DEC11 Mechanical Equipment Complete
CN1080	Mobilize Equipment Erector	5 24JUN11	30JUN11	-	24JUN11 S0JUN11 Mobilize Equipment Erector
CN1460	Install Condenser	40 01JUL11	25AUG11	-	01JUL11 25AUG11 Install Condenser
CN1730	Install Expansion Joint - Partial	15 12AUG11	01SEP11	-	12AUG11 101SEP11 Install Expansion Joint - Partial
CN1470	Set Ancillary Equipment	80 26AUG11	15DEC11	-	26AUG11 15DEC11 Set Ancillary Equipment
5141470	our animal Equipment	00 20A0011	1002011		
Ī					

Activity ID	Activity Description	Orig Early Dur Start	Early Finish		2009	2010			20	11 2012 J A S O N D J F M A M J J
Process P	The state of the s	Dui Start	FilliSii	J F M A M J	JAS	O N D J F M A M J J A S	OND	J F M	A M J	J A S O N D J F M A M J J L
CN1680	Process Piping Complete	0	29MAR12							Process Piping Complete ◆29MAR12
CN1070	Mobilize Process Piping	5 26AUG11	01SEP11	-						26AUG11 01SEP11 Mobilize Process Piping
CN1480	Install Lo Press & Temp Systems	120 02SEP11	16FEB12	-				Install Lo Pre	ss & Temp Syste	ems 02SEP11 16FEB12
CN1490	Install Hi Press Hi Temp Piping Systems	120 023EF11	01MAR12	-						stems 16SEP11 01MAR12
CN1490 CN1670	Pipe Insulation	80 09DEC11	29MAR12	-					romp riping of	09DEC11 29MAR12 Pipe Insulation
		80 09DECT1	29WAN 12							obeon service insulation
Process E	Process Electrical Complete	0	12APR12							Process Electrical Complete ◆12APR12
CN1570		-		<u> </u>					45 11 11	11 21JUL11 Mobilize Process Electrical
CN1090	Mobilize Process Electrical	5 15JUL11	21JUL11						15301	TI = 2130LTI MODIII ZE Process Electrical
	ation & Control		05APR12							Instrumentation Complete ◆05APR12
CN1250	Instrumentation Complete	0								
CN1260	Mobilize I&C	5 12AUG11	18AUG11	_				la atall DOO O		12AUG11 18AUG11 Mobilize I&C
CN1120	Install DCS System & Components	120 02SEP11	16FEB12					Install DCS Sys	sterri & Compone	onts 02SEP11 16FEB12
	Commissioning									
	ommissioning									
Administra										
SU110	Substantial Completion	0	12APR12							Substantial Completion 12APR12
SU90	Mechanical Completion	0	12APR12							Mechanical Completion ♦ 12APR12